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Abstract This chapter is devoted to optical properties of so-called Aharonov-Bohm
quantum rings (quantum rings pierced by a magnetic flux resulting in Aharonov-
Bohm oscillations of their electronic spectra) in external electromagnetic fields.
It studies two problems. The first problem deals with a single-electron Aharonov-
Bohm quantum ring pierced by a magnetic flux and subjected to an in-plane (lateral)
electric field. We predict magneto-oscillations of the ring electric dipole moment.
These oscillations are accompanied by periodic changes in the selection rules for
inter-level optical transitions in the ring allowing control of polarization properties
of the associated terahertz radiation. The second problem treats a single-mode mi-
crocavity with an embedded Aharonov-Bohm quantum ring which is pierced by a
magnetic flux and subjected to a lateral electric field. We show that external electric
and magnetic fields provide additional means of control of the emission spectrum
of the system. In particular, when the magnetic flux through the quantum ring is
equal to a half-integer number of the magnetic flux quanta, a small change in the
lateral electric field allows for tuning of the energy levels of the quantum ring into
resonance with the microcavity mode, thus providing an efficient way to control
the quantum ring-microcavity coupling strength. Emission spectra of the system are
discussed for several combinations of the applied magnetic and electric fields.
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1 Introduction and overview. Quantum Mechanics in
Semiconductor Aharonov-Bohm Quantum Rings and
Quantum Electrodynamics in Microcavities.

1.1 Introduction

In their celebrated paper [1] Aharonov and Bohm demonstrated that while in clas-
sical mechanics the fundamental equations of motion can always be expressed in
terms of the field alone, in quantum mechanics a canonical formalism is essential
and, as a result, potentials cannot be eliminated from the basic equations. Nanoscale-
sized semiconductor rings, which are now commonly called Aharonov-Bohm quan-
tum rings, are among other quantum systems used for experimental studies of the
renowned discovery. Few-electron quantum rings with a radial size of 10�20nm are
now easily fabricated. The mean free path of particles confined in these nanostruc-
tures exceeds the ring length, which results in the self-interference effects experi-
enced by particles. The influence of the field potentials upon this interference in the
regions with vanishing field magnitudes is a direct evidence of the Aharonov-Bohm
effect present in quantum rings.

This chapter is devoted to the optical properties of Aharonov-Bohm quantum
rings in external electromagnetic fields. The research presented in Section 4 was
motivated by a number of works which demonstrated the beneficial influence of an
external electric field on some electronic and optical properties of an Aharonov-
Bohm quantum ring. The list of these works and a brief description of their main
results can be found in Section 1.2. In our work, we study an infinitely-narrow quan-
tum ring subjected to a relatively weak static lateral electric field and pierced by a
magnetic flux [2, 3]. We predict magneto-oscillations of the ring electric dipole
moment and examine their electric field and temperature dependence. These oscil-
lations are accompanied by periodic changes for the selection rules for inter-level
optical transitions in the ring. Radiation associated with these transitions occurs at
terahertz frequencies for quantum rings with the radial size of 10�20nm. Most of
the results obtained for the static in-plane electric field can be easily generalized to
the case of the rotating field by a proper change of the coordinates system [4].

Exceptional opportunities to control the optical properties of quantum rings with
external fields stimulated our further research, which is presented in Section 5. In
this work, we study an Aharonov-Bohm quantum ring embedded into a single-mode
terahertz microcavity [5].

Microcavity quantum electrodynamics is an area which keeps attracting a strong
interest of both the condensed matter and quantum optics research communities.
One of the reasons of this everlasting interest is the feasibility of utilizing novel ef-
fects originating from field-matter coupling for developing novel nanodevices such
as terahertz polariton-lasers. In our studies, we calculate the emission spectrum of
the coupled quantum ring-microcavity system and show how it can be tuned by vari-
ation of the magnetic field piercing the quantum ring and the lateral electric field.
Such control of the emission spectrum was never possible with quantum dots in mi-
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crocavities. Advantages arising of using quantum rings instead of quantum dots as
photon emitters in microcavities are discussed in Section 5.3 and in Section 6.

The rest of this chapter is organized as follows. In Section 1.2 and Section 2
we provide a cursory overview of quantum phenomena in quantum rings and opti-
cal microcavities. In Section 3 some theoretical basics needed for understanding of
the later presented research are introduced. Section 4 and Section 5 contain origi-
nal work as described above. Conclusions and possible extension of this work are
included in Section 6.

1.2 Quantum mechanics in nanoscale Aharonov-Bohm quantum

rings

Progress in epitaxial techniques in recent decades has resulted in burgeoning de-
velopments in the physics of quantum dots (QDs), i.e., semiconductor-based ‘arti-
ficial atoms’. More recently, a lot of attention has been turned towards non-simply-
connected nanostructures, such as quantum rings (QRs), which have been obtained
in various semiconductor systems [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Originally, QRs were fabricated
accidently, when optimizing growth conditions for self-assembled InAs quantum
dots on a GaAs substrate, the QD material was splashed out from the QD cen-
tre, forming a volcano-like structure [6, 7, 8, 9]. Improved and perfected, it has
now become a routine procedure for the fabrication of QRs with typical radii of
10� 100nm [11, 12, 13, 14, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In
the literature, QRs produced as described above are usually referred to as ‘type-I
quantum rings’.

Nanostructures with an alternative realization of the ring-shape confinement, the
so-called ‘type-II quantum dots’, were suggested for exploring effects arising from
the non-simply-connectedness of such objects. In these nano-sized structures one
carrier is confined inside the QD and a carrier of an opposite charge is confined
in the barrier [10]. As a result, the carrier in the barrier experiences a rotational
movement with a radius of 10�20nm around the QD [15, 33, 20, 31, 32].

Another possible way of QRs fabrication is based on using the evaporative tem-
plating method [17]. This fabrication procedure includes three stages: introduction
of an aqueous solution which contains QDs and polystyrene microspheres onto the
surface of a glass substrate, evaporation, and microsphere removal. During the evap-
oration stage, QDs surround the microspheres and merge, which finally results in the
formation of a QR with the radial dimension of 80nm�1µm.

The fascination in QRs is caused by a wide variety of purely quantum me-
chanical effects, which are observed in ring-like nanostructures (for a review see
Refs. [34, 35, 36, 37, 38]). The star amongst them is the Aharonov-Bohm effect,
in which a charged particle [1, 39] is affected by a magnetic field away from the
particle’s trajectory, resulting in magnetic-flux-dependent oscillations of the ring-
confined particle energy. The same research group which discovered type-I QRs
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was the first to observe the Aharonov-Bohm type oscillations in these nanostruc-
tures [9]. This became the starting point for a series of experiments dedicated to the
Aharonov-Bohm effect in both type-I QRs [9, 19] and type-II QDs [10, 18, 20, 40].

There is significant interest in the excitonic Aharonov-Bohm effect in QRs,
which, in principle, should not exist as the exciton is a neutral particle and can
not be influenced by the magnetic field. However, due to the finite size of the
exciton, the excitonic Aharonov-Bohm effect is, in fact, possible. The excitonic
Aharonov-Bohm effect was theoretically studied by a number of authors in both 1D
QRs [41, 42, 43, 44, 45, 46] and 2D QRs [47, 48, 49, 50, 51, 52, 53, 54, 55, 33, 56].
It was shown that the Aharonov-Bohm type oscillations do exist in both 1D and
2D models, but vanish in QRs with the ring radial size larger than the exciton Bohr
radius or with increased ring width. Recently, it was demonstrated that in the 2D ex-
actly solvable model previously used in Refs. [57, 58, 59] the magneto-oscillations
in the exciton ground state survive down to regimes with radius-width ratio less than
unity [60].

To reveal the excitonic Aharonov-Bohm effect it was suggested to place the QR
in an external electric field, which delocalizes the relative electron-hole motion
around the entire ring [61, 62, 18, 63]. It was also shown that in the presence of
an in-plane (lateral) electric field exceeding a particular threshold it is possible to
switch the ground state of the QR exciton from being optically active (bright) to
optically inactive (dark) [62, 18].

2 Quantum electrodynamics in microcavities: light-matter
coupling

The strong coupling regime requires a microcavity (MC) to sustain an isolated
mode. Otherwise, the excited mode exponentially decays into the other MC modes.
There are three main designs which achieve the goal of zero-dimensional radiation
confinement, described below.

The first design, pillar MCs, are fabricated by etching a stack of conventional
Bragg mirrors. The typical height of pillar MCs is about 10µm. The lateral confine-
ment in pillar MCs is provided by the reflecting interface between the MC walls and
the surrounding media. The chances that the chosen pillar MC contains an emitter
(usually, a QD) which is in the strong coupling regime with the MC mode are com-
parably small and one has to check all produced MCs one by one until a cavity with
required characteristics is found.

Another possible realization of a single-mode MC is the photonic crystal cav-
ity. The original idea of a photonic crystal was developed by Yablonovich [64] and
John [65]. It is based on the same phenomena which leads to the appearance of
bandgaps in semiconductors. A structure with periodic modulations of permittivity
becomes forbidden for several ranges of wavelength due to the destructive interfer-
ences similar to those of Bragg physics. The first 3D photonic crystal was created
by drilling holes in a slab at three different angles, resulting in a full bandgap in
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the microwave range [66]. Several years later, a 2D photonic crystal with a bandgap
in the optical spectrum was reported [67]. By introducing a defect in the photonic
crystal periodic structure it is possible to create a MC (the so-called ‘Noda cavity’)
- radiation becomes trapped within the defect region [68]. Originally, values of the
Q-factor in photonic crystal MC were quite small (only around 400), but now using
some cunning designs of the photonic crystals periodic structure, MC with Q-factors
as large as 106 can be fabricated [69]. Some MC designs which promise Q-factors
up to 109 were also suggested [70].

The last design, the microdisk MC, confines radiation in whispering gallery
modes. For a review of microdisk cavities one can refer to Ref. [71].

One of phenomena which can be observed in semiconductor MCs in the Purcell
effect [72] in which the time of spontaneous emission is affected by the environment
of an emitter. The ratio of the times of spontaneous emission when the emitter is
placed in two different environments (e.g., MC and vacuum) is usually referred
as the Purcell factor. The first observation of the Purcell effect in semiconductor
MCs was done with a QD embedded into a pillar MC [73]. In this experiment, the
time of photon spontaneous emission was affected with a Purcell factor of 5. Several
similar observations in different systems (e.g., Refs. [74, 75] in pillar MCs, Ref. [76]
in microdisk MC, Ref. [77] in photonic crystal MC) followed this pioneering work.
For instance, in the experiment of Ref. [77] when a QD was placed inside a photonic
bandgap of a semiconductor the time of its spontaneous emission was extended to
2.52ns comparing to the time of 0.65ns when the same QD was placed in the bulk
semiconductor. The time of spontaneous emission of another QD placed in the same
photonic bandgap and brought into the resonance with the cavity was 0.21ns.

There has been an impressive development towards a better quantum coupling
with QDs in MC and improved external control. The latest achievements in fab-
rication techniques now allow one to position QDs inside MCs with spectacular
accuracy. In Ref. [78] a photonic crystal MC with a single QD placed exactly at the
maximum of the MC field intensity was demonstrated. In photonic crystal MCs one
can spectrally match the MC mode emission with the QD emission by artful etching
of the photonic crystal periodic structure. However, once the structure is fabricated,
adjustment of any system parameters becomes a difficult task.

The strong coupling regime in QDs in semiconductor MCs was first attained in
2004 in two sequential papers, Ref. [79] in a photonic crystal MC and Ref. [80] in
a pillar MC. The strong coupling in microdisc MC was reported a year later [81].
Since then, the strong coupling regime in semiconductor MCs was reported by sev-
eral research groups, but the number of experiments that achieved this regime re-
mains limited. In this cursory overview, we only provide the list of some of these
works - please see Refs. [79, 80, 81, 82, 83, 84, 85, 86, 87]. Two of the listed exper-
iments deserve a more detailed discussion.

In the first work, Refs. [84, 85], the authors developed an electronically con-
trolled device which uses the quantum confined Stark effect [88], in which the ex-
ternal electric field shifts the QD exciton discrete states towards lower energies, to
tune QDs in resonance with the mode of the photonic crystal MC. This experiment
presents a solution with on-chip control of the strong coupling. But still, due to the



6 A.M. Alexeev and M.E. Portnoi

weakness of the phenomena, this way of controlling the QR-MC coupling strength
remains somewhat limited. In the second work, Ref. [82], the strong coupling regime
was observed with a single QD in a photonic crystal MC. In this experiment the an-
tibunching of the Rabi doublet peaks was proved, which is possibly the first real
evidence of full field quantization in a coupled QD-MC system.

A system with a genuine strong coupling should noticeably change its behaviour
when an additional quantum of excitation is added or removed. In an ideal picture,
an emitter embedded in a MC (e.g., QD or QR) can be modelled as a two-level sys-
tem coupled to the MC mode. Such a system possesses a Hamiltonian with eigen-
states, hybrid light-matter states, form the so-called ‘Jaynes-Cummings ladder’. The
emission measured outside of the MC should mirror the structure of this ‘ladder’.

Lastly, we would like to note that to the best of our knowledge there are no ex-
perimental works exploring the strong coupling phenomena in QRs embedded into
MCs. We hope that our research presented in Section 5 will stimulate experiments
in this area.

3 Theoretical background. Quantum Description of
Light-Matter Coupling and the Dipole Approximation for
Optical Transitions.

3.1 Introduction

This section contains a brief review of the background theory which is used in the
rest of this chapter: quantization of the electromagnetic field, the two-level model
for a single-photon emitter, the density matrix operator concept, the equations of
motion for the density matrix operator, and the electric dipole approximation. More
details of this content can be found in various textbooks, such as Refs. [89, 90, 91,
92, 93, 94, 95, 96].

3.2 Light-matter coupling in microcavities: quantum description

3.2.1 Quantization of the electromagnetic field

Field oscillators - harmonic oscillators.

In the Coulomb gauge the vector potential of a sourceless classical electromagnetic
field (CEF) satisfies the requirement

divA(r, t) = 0, (1)
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and the homogeneous wave-equation

1
c2

∂ 2A(r, t)
∂ t2 �—2A(r, t) = 0, (2)

where r is the position vector and t is the time variable. The field scalar potential
can be chosen to be identically zero, so that the field is fully defined by the vector
potential

E(r, t) =� ∂
∂ t

A(r, t) , (3)

B(r, t) = —⇥A(r, t) . (4)

In what follows we consider a MC of a volume V without specifying its exact
shape. The quantization procedure, which we introduce later, does not depend on
the MC shape and is the same in MCs with various shapes (e.g., Refs [97] in planar
MCs, Ref. [98] in a spherical MCs, Ref. [99] in cylindrical MCs). The solution of
Eq. (2) can be written in the following form with separated variables

A(r, t) =
p

1/e0 Â
i

Qi (t)Ui (r) , (5)

where Qi (t) are the field amplitudes, Ui (r) is the set of field modes, and e0 is the
vacuum dielectric permittivity. For the present moment, we assume that all field
modes are linearly independent and thus can be orthonormalized. We discuss this
assumption in more detail later.

Substitution of Eq. (5) into Eq. (3) and Eq. (4) results in the following expressions

E(r, t) =�
p

1/e0 Â
i

Q̇i (t)Ui (r) , (6)

B(r, t) =
p

1/e0 Â
i

Qi (t)—⇥Ui (r) . (7)

Now let us return to the wave equation and substitute the chosen vector potential,
given by Eq. (5), into Eq. (2) to obtain

1
c2

⇥
Q̈i (t)+W 2

i Qi (t)
⇤

Ui (r)�Qi (t)


—2Ui (r)+
W 2

i
c2 Ui (r)

�
= 0,

Here Wi are the frequencies of the field modes. Since each of these equations should
be satisfied identically at any time moment and for any position in the space, the
expressions in square brackets should vanish separately

Q̈i (t)+W 2
i Qi (t) = 0, (8)

—2Ui (r)+
W 2

i
c2 Ui (r) = 0. (9)
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One can see that the above equations define CEF time (Eq. (8)) and spatial
(Eq. (9)) dynamics.

There are two boundary conditions imposed upon the electromagnetic field inside
a MC. Namely, the tangential component of the electric field and the normal com-
ponent of the magnetic field should vanish at the MC walls. Together with Eq. (1)
they lead to the following set of restricting conditions

Ui (r) |tang = 0 on the MC walls,

curlUi (r) |norm = 0 on the MC walls,

and
divUi (r) = 0 in all MC volume.

It can be shown that the first and the third conditions result in the electric field
vanishing on the MC walls. That, in turn, gives Ui (r) |walls = 0.

Once the exact MC shape is given, using the above conditions, one can solve
Eq. (9). The obtained solutions are unique for a given MC. Due to this fact, these
solutions are usually called ‘normal modes’ of the MC. Normal modes fully char-
acterize the geometry of a particular problem.

To be able to proceed with the field quantization we now need to define new
functions, the so-called ‘normal variables’, ai and a⇤i , which reexpress the field am-
plitudes Qi in the following way

Qi =

r
h̄

2Wi
(ai +a⇤i ) ,

Q̇i =�i

r
h̄Wi

2
(ai �a⇤i ) .

The expressions above can be inverted. Carrying out this simple operation one ob-
tains the following result

ai =

r
1

2h̄Wi

�
WiQi + iQ̇i

�
,

a⇤i =
r

1
2h̄Wi

�
WiQi � iQ̇i

�
.

Using the normal variables we can redefine the field vector potential (Eq. (5)) and
the electric and magnetic fields (Eqs. (6)-(7)) as

A(r, t) = Â
i

s
h̄

2e0Wi
(ai +a⇤i )Ui (r) ,

E(r, t) = iÂ
i

s
h̄Wi

2e0
(ai �a⇤i )Ui (r) ,
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B(r, t) = Â
i

s
h̄

2e0Wi
(ai +a⇤i )curlUi (r) .

In classical electrodynamics the energy of the electromagnetic field is given by
the integral

ECEF =
e0

2

Z

V

⇥
E2 + c2B2⇤dr.

Performing several transformations it is easy to rewrite this expression in terms
of the field amplitudes and the normal variables

ECEF =
1
2 Â

i

⇥
Q̇2

i +W 2
i Q2

i
⇤
= Â

i
h̄Wia⇤i ai. (10)

Now we need to recall some basics of the quantum harmonic oscillator (QHO).
The Hamiltonian of one-dimensional QHO with a unit mass reads as [95]

HQHO = h̄w
�
â†â+1/2

�
, (11)

where w is the oscillator frequency and â†, â are the creation and annihilation op-
erators. The eigenstates of the QHO can be denoted by |ni with n = 0,1,2, .., so
that

HQHO |ni= h̄w (n+1/2) |ni .

These states form the so-called ‘QHO ladder’. Each of these states can be con-
structed from the vacuum state |0i, which possesses the property â |0i = 0, by ap-
plication of the creation operator n-times:

|ni=
�
â†�n |0i
p

n!
.

One can notice that the QHO Hamiltonian given by Eq. (11) is of the same form as
the Eq. (10), which defines energy of CEF expressed in terms of normal variables.
The only difference is the term h̄w/2 which appears due to the non-commutativity
of the creation and annihilation operators. Later we show that this term should be
omitted in order to normalize energy of the quantized electromagnetic field (QEF)
with an infinite number of modes (e.g., QEF in vacuum).

This similarity allows us to proceed with the intuitively simple quantization of the
electromagnetic field. The trick is to substitute the normal variables with the creation
and annihilation operators, which satisfy the commutation relation

h
âi, â†

j

i
= di j

with all other commutators vanishing. The above commutation relation reflects the
linear independence of the field modes.

Performing this substitution we arrive at the following expressions for the field
vector potential and the electric and magnetic fields
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Â = Â
i

s
h̄

2e0Wi
(âi + â⇤i )Ui (r) ,

Ê = iÂ
i

s
h̄Wi

2e0
(âi � â⇤i )Ui (r) ,

B̂ = Â
i

s
h̄

2e0Wi
(âi + â⇤i )—⇥Ui (r) .

From now on, the electromagnetic field is described with the quantum mechanical
operators Â, Ê, and B̂. Since the creation and annihilation operators entering the
equations above do not commute, these operators do not commute as well. One can
see that after quantization the time dynamics of the electromagnetic field is hidden in
the creation and annihilation operators âi and â†

i . Recall that before the quantization
procedure the time dependence was defined by the dynamical behaviour of the field
amplitudes Qi.

To finish with the electromagnetic field quantization we should define the Hilbert
space of the field eigenstates. We employ once again the analogy with the quantum
harmonic oscillator and define the vacuum state of any of the electromagnetic field
modes by the requirement âi |0i = 0. Due to the independence of field modes we
can construct all other eigenstates as a tensor product

|n1,n2, . . . ,nk, . . .i= |n1i⌦ |n2i⌦ · · ·⌦ |nki⌦ · · ·=
O

i

⇣
â†

i

⌘ni

p
ni!

|0i ,

where the index i numbers the field modes and ni are the non-negative integers
usually called ‘mode occupation numbers’.

In some cases the number of the field modes in a MC can be infinite and the field
energy should be renormalized by omitting the term which is responsible for the
vacuum state energy in the field Hamiltonian [89, 90, 91, 92, 93, 94]. In this case
the Hamiltonian of the QEF reads

HQEF = Â
i

h̄Wiâ†
i âi.

In our research presented in this chapter we will consider a MC which sustains just
one mode of QEF. In this case the MC field Hamiltonian reads as

HMC = h̄wMCâ†â, (12)

where wMC is the MC mode frequency and we have omitted creation and annihila-
tion operators indices to simplify notation.
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Quantization in a cubic box of volume V.

As was discussed above, the set of field modes which is allowed for a particular
problem is fully defined by the geometry of a given MC. In this Section we study
a MC with a cubic shape. This case is of significant importance as it allows one to
introduce the plane wave representation for the QEF.

The most natural set of orthonormal functions in a cubic MC is the set of plane
waves given by

fk,a =
ek,a exp(ikr)p

V
,

where k is the wave vector and index a represents the wave polarization. The wave
vector k satisfies the dispersion relation wk = kc with k = |k|. This is a consequence
of the requirement for the plane wave functions to satisfy the Helmholtz equation.
The polarization vectors ek,a are complex numbers normalized to unity.

The next step is to expand the field vector potential introduced in the previous
Section in terms of the cubic MC plane waves

Â = Â
k,a

s
h̄

2e0WkV

h
ek,a âk,a exp(ikr)+ e⇤k,a â†

k,a exp(�ikr)
i

. (13)

In the Coulomb gauge, the field vector potential Â has only the transverse compo-
nent. When applied to Eq. (13) this requirement gives

ek,a ·k = e⇤k,a ·k = 0.

There are only two linearly independent vectors orthogonal to the wave vector
k. We refer to them with the index a , which, for a given k, can now take only
two values, a = 1,2. Real values of the polarization vector represent two linear
polarizations of the electromagnetic field while complex values correspond to two
different circular polarizations.

Finally, to finish with the plane wave representation, we reexpress the boundary
conditions for the electric and magnetic fields inside a MC in terms of the plane
wave functions fk,a .

Using the boundary conditions imposed upon the field modes Ui in the previous
Section we obtain the following periodic boundary conditions for fk,a

fk,a (r+ l jL) = fk,a (r) ,

where L is the length of the MC sides and l j is a set of unit vectors directed along
the MC edges. From this condition it is easy to retrieve quantization rules for k

k =
2p
L

(Nxlx +Nyly +Nzlz) ,
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where Nx, Ny, Nz are integer numbers which allow an alternative way to number the
MC plane waves. One should not confuse this numbering with the modes occupation
numbers introduced earlier.

To conclude this Section we provide expressions for the quantized electromag-
netic field operators, the electromagnetic field Hamiltonian, and Hamiltonian eigen-
states in the plane wave representation

Ê = i Â
k,a

s
h̄Wk

2e0V

h
ek,a âk,a exp(ikr)� e⇤k,a â†

k,a exp(�ikr)
i

, (14)

B̂ = i Â
k,a

s
h̄Wk

2e0V

h
(k⇥ ek,a) âk,a exp(ikr)�

�
k⇥ e⇤k,a

�
â†

k,a exp(�ikr)
i

, (15)

HQEF = Â
k,a

h̄Wkâ†
k,a âk,a , (16)

|{nk,a}i= |. . . ,nki,ai , . . .i=
O

k,a

⇣
â†

k,a

⌘nk,a

p
nk,a !

|0i . (17)

From the Eqs. (14)-(16) it is clear that the electric and magnetic field are related
by B̂ = Â

k,a
(k/Wk)⇥ Êk,a .

3.2.2 Two-level photon emitter

In Section 3.2.1 we introduced notation in which the QEF is described in the lan-
guage of QEF modes occupation numbers. In this notation electric and magnetic
fields are defined in terms of creation and annihilation operators. In this Section we
show how fermionic states of a single-photon emitter (SPE) can be described in the
same language.

A single-photon emitter whose excitations obey fermionic statistics can populate
only a finite number of eigenstates, with a maximum of one excitation per eigen-
state. This restriction is known as the Pauli exclusion principle [95]. Considering
such a system in a general way we denote its eigenstates by |ii and the corre-
sponding eigenenergies by ei. We assume that this set of eigenstates is orthonor-
mal, hi| ji= di, j, and complete, Â

i
|iihi|= 1. The eigenstate’s index i may consist of

several quantum numbers.
Instead of the creation and annihilation operators a† and a, the system can be

described with the projector operators

s†
i j = | jihi| ,

and
si j = |iih j| .
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These projector operators induce promotion from the state i to the state j and from
the state j to the state i by creating an excitation in the system in the same way as
operators a† and a create and annihilate an excitation in a particular mode of the
QEF. The main difference is that the projector operators can be applied only once
as only one excitation is allowed for each of the emitter eigenstates. If ei < e j, the
projector operator s†

i j acts as the rising operator while the projector operator si j acts
as the lowering operator, and if ei > e j, projector operators swap their roles.

Using this notation a single-photon emitter Hamiltonian can be defined in the
following way

HSPE = Â
j

e j | jih j|= Â
j

e js†
i jsi j. (18)

In most practical cases there is only one mode of the QEF which interacts with the
single-photon emitter in a MC. This mode is usually tuned to one of the resonances
of the emitter and has a relatively narrow spectral bandwidth. If the other eigenstates
are separated by energy gaps which are much larger than the energy associated
with the MC mode, all eigenstates other than the two which are brought into the
resonance can be safely disregarded.

From now on, we assume that the field causes transitions between only two par-
ticular eigenstates of the single-photon emitter. We denote these eigenstates by |gi
(the ground state) and |ei (the excited state). The energy gap between these two
eigenstates we denote by D . This approximation to a multi-level quantum emitter
we call the ‘two-level emitter’ (2LE) approximation. It should be noted that such
a basic model works exceptionally well for real systems and gives a good insight
into the quantum phenomena occurring in realistic experimental systems (e.g., see
Refs. [100, 79, 80, 81, 82, 101, 102]).

The Hamiltonian given by Eq. (18) in the ‘two-level emitter’ approximation reads
as

H2LE = D |eihe|= Ds†s , (19)

where we chose the zero energy level to coincide with the energy of the ground state
|gi and s† = (sx + isy)/2, s = (sx � isy)/2 with

sx =

✓
0 1
1 0

◆
, sy =

✓
0 �i
i 0

◆
,

being the Pauli matrices acting in the space of the emitter ground |gi and excited |ei
states.

3.2.3 Field-emitter coupling

Coupling of the QEF to SPE is the key phenomenon which enters all further consid-
erations. Using the analogy with classical electrodynamics we take the interaction
Hamiltonian in the dipole approximation as
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HINT =�d ·E,

where d is the SPE dipole moment operator and E is the QEF electric field operator
given by Eq. (14) and taken at the position of the SPE. The interaction Hamiltonian
can be reexpressed in the following way

HINT =�Â
k,a

d̂ ·
⇣

E+
k,a +E�

k,a

⌘
, (20)

where

E+
k,a = i

s
h̄Wk

2e0V

h
ek,a ak,a exp(ikrSPE)

i
, (21)

and

E�
k,a =�i

s
h̄Wk

2e0V

h
e⇤k,a a†

k,a exp(�ikrSPE)
i

. (22)

Note that in Eqs. (21)-(22) the field operators E+
k,a and E�

k,a are taken at the
position of the SPE. We would like to stress once more that the time dynamics of
the QEF is hidden in the creation and annihilation operators. The SPE electric dipole
moment operator is given by

d = Â
i, j

di j |iih j| , (23)

where di j is the dipole moment operator matrix element calculated between two
different states of the SPE

di j = hi|d | ji= e
Z

y⇤
i (r)ry j (r)dr.

In many cases the emitter eigenfunctions possess the property of parity and thus the
diagonal matrix elements dii = 0. Substituting Eq. (23) into Eq. (20) we obtain

HINT =�Â
k,a

Â
i, j
|iih j|di j ·

⇣
E+

k,a +E�
k,a

⌘
.

In order to show that the above Hamiltonian is Hermitian we open the brackets in the
expression above, swap indices i $ j in the second term under summations (since
the second summation is over all possible combinations of (i, j) and the case dii = 0
is allowed), and use the fact that d ji = d⇤

i j. This results in

HINT =�Â
k,a

Â
i, j
|iih j|di j ·E+

k,a + | jihi|d⇤
ji ·E�

k,a . (24)

From this equation it can be clearly seen that HINT is indeed Hermitian. Let us
now transform the interaction Hamiltonian into a form which will be more suitable
for further calculations. For the case of 2LE from Eq. (24) we immediately get the
following result
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HINT =

�Â
k,a

⇣
|eihg|deg ·E+

k,a + |gihe|d⇤
ge ·E�

k,a + |eihg|d⇤
eg ·E�

k,a + |gihe|dge ·E+
k,a

⌘
.

(25)

In the expression above there are four terms under summation. We discuss each of
them separately:

• The first term corresponds to the transition from the ground state |gi to the excited
state |ei. As expected, a photon is absorbed as a result of this transition (due to
the presence of the anihilation operator in the expression for E+

k,a ).
• The second term corresponds to the transition from the excited state |ei to the

ground state |gi. As expected, a photon is emitted as a result of this transition
(due to the presence of the creation operator in the expression for E�

k,a ).
• The third term corresponds to the transition from the ground state |gi to the

excited state |ei. We expect a photon to be absorbed. Contrary to this expectation,
the photon is in fact created (due to the presence of the creation operator in the
expression for E�

k,a ).
• The forth term corresponds to the transition from the excited state |ei to the

ground state |gi. We expect a photon to be emitted. Contrary to this expectation,
the photon is in fact annihilated (due to the presence of the annihilation operator
in the expression for E+

k,a ).

One can see that the third and forth terms are nonresonant, these terms do not sat-
isfy the energy conservation law. This fact allows one to neglect these terms in the
interaction Hamiltonian given by Eq. (24). Another argument which supports this
approximation comes from time-dependent perturbation theory. It is well-known
that non-resonant transitions have negligibly small probabilities. This approxima-
tion is called the ‘rotating wave approximation’ (the name originates from the form
of the interaction Hamiltonian in the reference frame rotating with the frequency
of the electromagnetic field) and is widely used in quantum electrodynamics prob-
lems [89, 90, 91, 92, 93, 94]. It can be shown that the neglected terms lead to small
corrections called Bloch-Siegert shifts [103].

Therefore, the final expression for quantized electromagnetic field - two-level
emitter (QEF-2LE) interaction Hamiltonian reads as

HINT =�Â
k,a

⇣
|eihg|deg ·E+

k,a + |gihe|d⇤
ge ·E�

k,a

⌘
, (26)

where the electric field operators E+
k,a and E�

k,a are given by Eqs.(21)-(22) from the
previous Section.
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3.2.4 Density matrix operator

The most general way to describe a system, whether it is isolated from the external
environment or interacts with it, is based on utilizing the density matrix operator.
In what follows we first introduce the basic concept of the density matrix operator
and then show how using the master equation approach it is possible to calculate
a stationary density matrix of a system in the presence of incoherent pumping and
dissipation processes.

Let us consider an ensemble of N identical emitters in quantum states denoted
by i and with corresponding wave functions Y i. An average value of an observable
O can be calculated for each of these emitters using corresponding operator Ô. The
statistic average over the whole ensemble is given by

hOi=

N
Â

i=1

⌦
Y i

�� Ô
��Y i↵

N
. (27)

The equation above contains two types of averaging - the quantum mechanical av-
eraging, which is given by the matrix element, and statistical averaging, which is
given by the sum of the observable value over the ensemble elements divided by the
number of elements.

As all emitters in the ensemble are identical, each of them possess the same set
of eigenstates jn. Thus, the total emitter’s states Y i can be expanded in terms of the
emitter’s eigenstates jn as follows

��Y i↵= Â
n

Ci
n |jni , (28)

where Ci
n =

⌦
jn|y i↵ and Â

n

��Ci
n
��2 = 1. Substituting Eq. (28) into Eq. (27) one obtains

hOi= Â
m,n

✓
ÂN

i=1 Ci
n
⇤Ci

m
N

◆
Onm = Â

m,n
rnmOnm, (29)

where we have introduced a new important entity, the density matrix rnm, which is
given by

rnm =
N

Â
i=1

Ci
n
⇤Ci

m/N =Ci
n
⇤Ci

m. (30)

The density matrix contains all statistical information about the considered ensem-
ble of emitters. It is easy to show that the density matrix is normalized

Tr{r̂}= Â
n

rnn =
N

Â
i=1

Â
n

Ci
n
⇤Ci

n/N =
N

Â
i=1

1/N = 1.

Using the matrix multiplication rule Eq. (29) can be written in a shorter and more
convenient form
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hOi= Â
m,n

rmnOnm = Â
n

�
r̂Ô

�
nn = Tr{r̂Ô}. (31)

For instance, for the identity operator 1̂ using Eq. (31) one straightforwardly obtains

h1i= Â
n,m

rmn hjn| 1̂ |jmi= Â
n,m

rmndnm = Tr{r̂}= 1.

The representation of the density matrix operator in terms of expansion coefficients
Ci

n is only one of many possible expansions. One can see that the final expression
for the average value of an observable O is given by the trace of the density matrix
operator. The trace of an operator is independent of the basis chosen in the Hilbert
space. That means that the density matrix operator can be defined in a more general
way. However, it is convenient to try to define the density matrix operator in terms
of system eigenstates, but independently of any basis in the Hilbert space. One of
the possible definitions is as follows

r̂ =
1
N

N

Â
i=1

��Y i↵⌦Y i�� .

There are no restrictions on the states Y i, these states can even be non-orthogonal,
although it is usually not convenient. It is easy to show that if the basis of the eigen-
states jn is chosen as the set of system eigenstates, this definition is equivalent to
Eq. (30).

In order to give a more clear insight into the nature of the density matrix oper-
ator and reexpress it in an even more convenient form we introduce the so-called
‘projector operators’ (similar to those discussed in Section 3.2.2)

p̂c = |cihc| .

When acting on a state y these operators give a projection of the state y in the
direction of the state c . For the expectation value of the projector operator p̂c in a
state y one can easily obtain

⌦
p̂c

↵
= hy| p̂c |yi= hy|cihc|yi= |hc|yi|2 . (32)

Eq. (32) gives the probability to find the system, which was originally prepared in
the state |yi, in the state |ci.

Let us now return to the ensemble of emitters. Since the trace of an operator is
independent of the basis in which this operator is defined, for convenience we will
use the basis of the emitters eigenstates jn. In this case for the expectation value of
the projector operator p̂c one obtains

⌦
p̂c

↵
= Tr{p̂c r̂}= Â

n
hjn|cihc |r̂|jni= Â

n
hc |r̂|jnihjn|ci= hc |r̂|ci . (33)
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One can see that the probability of finding the ensemble of emitters in the state |ci
is given by a diagonal element of the density matrix operator.

Now it is possible to make some generalization of the density matrix operator.
Instead of defining the density matrix operator as a sum over all emitters states Y i

one can to use the sum over all states accessible to the ensemble elements

r̂ = Â
j

��y j↵P( j)
⌦
y j�� . (34)

Here P( j) are the statistical weights which satisfy the requirement Â
j

P( j) = 1. A

few paragraphs later, we explain the physical meaning of these coefficients in more
details.

Using Eq. (33) and Eq. (34) we obtain the probability of finding the system in
one of the states y j which were used for the density matrix operator basis

hya | r̂ |yai= Â
j

⌦
ya |y j↵P( j)

⌦
y j|ya↵= Â

j
P( j)

��⌦ya |y j↵��2 . (35)

If the set of states
��y j↵ is orthonormal, Eq. (35) can be simplified in the following

way
hya | r̂ |yai= Â

j
P( j)da j = P(a) . (36)

From the Eq. (36) one can see that the statistical weight P(a), in fact, defines the
population of the state |yai (i.e., probability that the state is occupied).

If the set
��y j↵ is not orthonormal, it is clearly not possible to obtain any simple

relation between probabilities hya | r̂ |yai and statistical weights P(a).

3.2.5 Equation of motion for the density matrix

Coherent coupling: the von Neumann equation for the density matrix.

In Section 3.2.4 it was demonstrated that an average value of an observable O in an
ensemble of emitters can be calculated using the system density matrix operator r̂ .

In the Schrödinger picture, all operators are time-independent and thus the time
dynamics of the average should be hidden in the time dependence of the density
matrix operator

hOSit = Tr{r̂ (t) ÔS},

where the index ‘S’ refers to the Schrödinger representation. It is clear that in order
to be able to predict time dynamics of the system, an equation of motion for the
density matrix operator is needed. Such an equation can be derived from the fact that
the physical contents should not depend on whether the Schrödinger or Heisenberg
picture is chosen for describing the system.
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The density matrix operator r̂ is defined as a sum of projections on a given set of
states. In the Heisenberg picture the states are time-independent, though operators
are time-dependent. In this case one can expect the density matrix operator to be
defined by the initial state of the system. Comparing expressions for the observable
averages in the Schrödinger and Heisenberg quantum mechanics descriptions we
obtain

hOSit = Tr{r̂ (t) ÔS}= hOH (t)i= Tr{r̂ (t0) ÔH (t)}, (37)

where the index “H” refers to the Heisenberg representation. The evolution of oper-
ators in the Heisenberg picture can be related to the operators representation in the
Schrödinger picture in the following way

ÔH (t) =U† (t, t0) ÔSU (t, t0) . (38)

In Eq. (38) U (t, t0) is the evolution operator given by

U (t, t0) = exp
⇥
�iĤ (t, t0)/h̄

⇤
,

where Ĥ is the system Hamiltonian. Substitution of Eq. (38) into Eq. (37) results in

Tr{r̂ (t) ÔS}= Tr{r̂ (t0)U† (t, t0) ÔSU (t, t0)}.

Using the cycling property of the trace operation the equation above can be rewritten
as

Tr{r̂ (t) ÔS}= Tr{U (t, t0) r̂ (t0)U† (t, t0) ÔS}. (39)

From Eq. (39) one can easily obtain the following expression for the density matrix
operator time evolution

r̂ (t) =U (t, t0) r̂ (t0)U† (t, t0) . (40)

Differentiation of Eq. (40) results in

ih̄
∂ r̂ (t)

∂ t
=


ih̄

∂U (t, t0)
∂ t

�
r̂ (t0)U† (t, t0)�U (t, t0) r̂ (t0)


�ih̄

∂U† (t, t0)
∂ t

�
. (41)

We simplify Eq. (41) using the fact that the evolution operator U (t, t0) satisfies the
Schrödinger equation and obtain

ih̄
∂ r̂ (t)

∂ t
= ĤU (t, t0) r̂ (t0)U† (t, t0)�U (t, t0) r̂ (t0) ĤU† (t, t0) = Ĥr̂ (t)� r̂ (t) Ĥ.

(42)
Here Eq. (40) was used for the last step of the simplification. This equation of mo-
tion for the density matrix operator (mixed state) is called the ‘von Neumann equa-
tion’ [104]. It is an equivalent of the Schrödinger equation for the state vector (a
pure state). The von Neumann equation can be written in a more compact form
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∂ r̂ (t)
∂ t

=
i
h̄
⇥
r̂ (t) , Ĥ

⇤
. (43)

It should be stressed that the von Neumann equation corresponds to the Schrödinger
quantum mechanics description, where all operators are time-independent. In the
Heisenberg quantum mechanics description, the density operator does not depend
on time and is defined by the initial conditions.

Incoherent processes: the Master Equation with the Linblad terms.

A correct description of a system which interacts with the external environment
should include decoherence processes such as dissipation (decay) of particles to
an external reservoir and income (pump) of particles from an external reservoir. In
the case of the coupled 2LE-MC system these particles are either the MC photons,
which can be supplied into the system, for instance, by the optical pumping, but
eventually leak out, or the 2LE excitations, which can experience nonradioactive
transitions from the excited to the ground state.

The leaking out photons not only cause decoherence in the system, but also pro-
vide an external observer with valuable information about the field-matter inter-
action inside the MC. This stresses once more the importance of considering the
decoherence processes.

In order to account for the described processes the equation of motion for the
density matrix operator should be upgraded from the von Neumann equation [104]
to the master equation in the Lindblad form [105]

∂r
∂ t

=
i
h̄
[r,HJC]+L MC

P r +L MC
g r +L 2LE

g r , (44)

In Eq. (44) HJC = HMC +H2LE +HINT is the full Hamiltonian of the coupled 2LE-
MC system first introduced by Jaynes and Cummings [106] and now commonly
called ‘Jaynes-Cummings Hamiltonian’ with HMC given by Eq. (12), H2lE given by
Eq. (19), and HINT given by Eq. (26). The operators L MC

P , L MC
g , and L 2LE

g are the
so-called Lindblad terms. In the explicit form these three terms are given by

L MC
P r =

PMC

2
(2a†ra�aa†r �raa† +2ara† �a†ar �ra†a),

L MC
g rho =

gMC

2
(2ara† �a†ar �ra†a),

and
L 2LE

g r =
g2LE

2
(2srs† �s†sr �rs†s),

where PMC is the intensity of the MC pumping, gMC, g2LE are the decaying rates of
the MC and 2LE excitation, a†, a are MC creation and annihilation operators (the
same that enter HMC, see Eq. (12)), and s†, s are 2LE creation and annihilation
operators (the same that enter H2LE , see Eq. (19)).
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In the scope of this chapter we are not interested in particular pumping and dis-
sipation mechanisms which are present in various experimental systems. We only
note that different pumping and dissipation process were studied by a number of au-
thors, see, e.g., Refs. [107, 108]. For our further considerations only the fact that all
such processes are well-described by the introduced master equation with Lindblad
terms is important.

Mainly, there are two different derivations of the Lindblad terms in Eq. (44)
which can be found in the literature. The first derivation is based on a microscopic
study of the system coupling to an external reservoir, which is represented as a bath
of oscillators [94, 109]. The second procedure utilizes the Monte-Carlo method and
quantum jumps. This approach is preferred in Refs. [89, 90] as it is closer to the
quantum information and measurement theories. In this case, the time evolution
of the system is understood as a sequence of coherent periods of the Hamiltonian
dynamics and incoherent events taking place with some probability. In this picture
the microscopic origin of the incoherent processes is not considered and they are
just assumed to be present with a given probability.

All together, the Lindblad terms L MC
P , L MC

g , and L 2LE
g can be put in the form

of a total superoperator L

∂r
∂ t

=
i
h̄
[r,H]+L r .

Due to the balance between the pump and decay, after some time a steady state is
established. We denote the density matrix which describes such steady state by rSS.
Throughout this chapter we consider only such values of the parameters PMC, gMC,
and g2LE which lead to establishing of some steady state with non-divergent popula-
tions. We do not discuss exact experimental conditions which result in a particular
combination of these parameters and only note that all the considered values of PMC,
gMC, and g2LE correspond to attainable experimental systems.

3.3 Calculating optical transitions: electric dipole approximation

Let us consider a system described by the full Hamiltonian H (t) = H0 + H 0 (t)
where H0 is the stationary (time-independent) Hamiltonian with eigenfunctions��y j

↵
satisfying

H0 ��y j
↵
= e j

��y j
↵

,

with e j = h̄w j, and H 0 (t) is the time-dependant perturbation given by

H 0 (t) = H̃ 0e�iwt ,

where w is the frequency of the exciting radiation. If perturbation is weak, it
only causes transitions between the states

��y j
↵
. According to the first order time-

dependant perturbation theory the rate of transitions between two different states
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|yii (initial state) and
��y f

↵
(final state) is given by

Ti f =
1
h̄2

��⌦y f
��H 0 (t) |yii

��2 sin2 ⇥ t
2
�
w f �wi �w

�⇤

t
⇥ 1

2
�
w f �wi �w

�⇤2 .

Here t is the time which corresponds to the broadening of the optical transitions
and which can be defined as t � 2p/Dw where Dw is the linewith of the excitation
radiation. If Dw is small, t becomes large and using

d (x ) = lim
x!0

x
p

sin2 (x/x)
x 2

we obtain the rate of transitions between the system eigenstates |yii and
��y f

↵
given

by Fermi’s golden rule

Ti f =
2p
h̄

��⌦y f
��H 0 (t) |yii

��2 d (e f � ei � h̄w). (45)

The Hamiltonian operator of an electron interacting with electromagnetic field is
given by

H =
1

2m
(p+

q
c

A)2 = H0 +
q

2mc
(A ·p+p ·A)+

1
2m

⇣q
c

⌘2
A ·A, (46)

where H0 = p/2m is the Hamiltonian of the unperturbed system, m is the electron
mass, p is the electron momentum operator, and A is the electromagnetic field vector
potential.

The vector potential of a plane electromagnetic wave, hitting the sample at nor-
mal incidence, can be chosen as

A = A0cos(Qr�wt),

where Q is the field wave vector and r is the position vector. The electric field of the
perturbing radiation is calculated as the time derivative of the vector potential

E(r, t) = 1
c

∂A(r, t)
∂ t

.

In the Coulomb gauge the vector potential of a sourceless electromagnetic field in
vacuum satisfied — ·A = 0 and therefore

[A,p] = ih̄— ·A = 0.

The ratio of the third to the second term in Eq. (46) can be written in the following
way

e
c

A
p
=

eE
w p

⇡ e
w p

✓
8pS

c

◆1/2
(47)
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where E is the magnitude of the electric field associated with the perturbing radia-
tion and S is the Poynting vector, which gives energy flux density of the electromag-
netic field (energy per time per unit area). Expression in Eq. (47) is much less than
unity for the values of S up to 1012W/m2. For most material such field intensities
are higher than the material damage threshold. Thus, the third term in Eq. (46) can
be safely neglected

H = H0 +
q

mc
(A ·p)+ 1

2m

⇣q
c

⌘2
A ·A ⇡ H0 +

q
mc

(A ·p).

The second term in this equation can be easily expressed as H+e�iwt +H�eiwt with
H± given by

H± =
q

2mc
e±iQrA0 ·p =

q
2mc

|A0|e±iQr (e ·p) ,

where we have introduced the radiation polarization vector e and the vector r should
be taken at the position of the electron.

To simplify calculations we use the dipole approximation, which assumes that
Qr ⌧ 1 and thus e±iQr ⇡ 1. Within this approximation H± becomes

H± =
q

2mc
|A0|(e ·p) . (48)

Substituting Eq. (48) into Eq. (45) (the Fermi’s golden rule) we get the final
expression for the rate of optical transitions between the states |yii and

��y f
↵

caused
by the perturbing electromagnetic field

Ti f =
2p
h̄

⇣ q
2mc

⌘2
|A0|2

��⌦y f
��e ·p |yii

��2 d (e f � ei � h̄w).

4 Quantum rings in classical electromagnetic fields. Electric
Dipole Moment Oscillations and Terahertz Transitions in
Aharonov-Bohm Quantum Rings.

4.1 Introduction

Recently a lot of attention has been turned towards non-simply-connected nanos-
tructures, quantum rings, which have been obtained in various semiconductor sys-
tems [9, 10, 17]. The fascination in quantum rings is partially caused by a wide va-
riety of purely quantum mechanical effects, which are observed in ring-like nanos-
tructures. The star amongst them is the Aharonov-Bohm effect [1, 39], in which a
charged particle is influenced by a magnetic field away from the particle’s trajec-
tory, resulting in magnetic-flux-dependent oscillations of the ring-confined particle
energy. The oscillations of the single-particle energy are strongly suppressed by dis-
tortion of the ring shape or by applying an in-plane (lateral) electric field, thus re-
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ducing the symmetry of the system [110, 111] (see Fig. 1). However, there are other

Fig. 1 An Aharonov-Bohm quantum ring pierced by a magnetic flux and subjected to a lateral
electric field. (From Ref. [3]).

physical quantities, which might have even more pronounced magneto-oscillations
when the symmetry of the ring is reduced. For example, in the presence of a lat-
eral electric field exceeding a particular threshold it is possible to switch the ground
state of an exciton in an Aharonov-Bohm ring from being optically active (bright)
to optically inactive (dark)[62, 18]. Another hitherto overlooked phenomenon is the
flux-periodic change of an electric dipole moment of a quantum ring, which is the
main subject of this work.

This section is organized as follows. In Section 4.2 we calculate the single-
electron energy spectrum of an infinitely-narrow Aharonov-Bohm ring subjected to
a lateral electric field. In Section 4.3 we consider magneto-oscillations of the ring’s
electric dipole moment and study their electric field and temperature dependence.
Matrix elements of the dipole moment calculated between different states define
selection rules for optical transitions. For experimentally attainable quantum rings
these transitions occur at THz frequencies. In Section 4.4 we discuss optical selec-
tion rules for intraband optical transitions and show how the polarization properties
of the associated THz radiation can be tuned by external electric and magnetic fields.
Section 4.5 contains a brief discussion of the potential applications of the predicted
phenomena.

4.2 Energy spectrum of an infinitely-narrow quantum ring

4.2.1 Magneto-oscillations of the quantum ring eigenenergies

The Hamiltonian of an electron confined in an infinitely narrow QR pierced by mag-
netic flux F depends only on the polar coordinate j

HF =� h̄2

2MeR2
∂ 2

∂j2 � ih̄e
2p

F
MeR2

∂
∂j

+
e2F2

8p2MeR2 , (49)
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where Me is the electron effective mass and R is the QR radius. The 2p-periodic
eigenfunctions of the Hamiltonian defined by Eq. (49) are

ym (j) = eimj
p

2p
, (50)

and the corresponding eigenvalues are given by

em( f ) =
h̄2 (m+ f )2

2MeR2 = (m+ f )2 e1(0) . (51)

Here m = 0,±1,±2... is the angular momentum quantum number, and f = F/F0
is the number of flux quanta piercing the QR (F0 = h/e). The electron energy spec-
trum defined by Eq. (51) is plotted in Fig. 2. It exhibits oscillations in magnetic

Fig. 2 (a) The energy spectrum of an infinitely narrow quantum ring pierced by a magnetic flux F .
Each parabola corresponds to a particular value of the electron angular momentum m. The electron
energies e are plotted versus the number of flux quanta F/F0. (b) Expanded view on a smaller
energy scale. (From Ref. [3]).

flux with the period equal to F0, known as Aharonov-Bohm oscillations [9, 1]. One
can see intersections (degeneracy) of the energy levels with different angular mo-
menta, when F is equal to an integer number of F0/2. Optical selection rules allow
transitions between states with angular momentum quantum numbers different by
unity (Dm = ±1). For typical nanoscale rings [9, 10] the energy scale of the inter-
level separation, e1(0) = h̄2/2MeR2, is in the THz range. When F exceeds F0/2 the
electron possesses a non-zero angular momentum in the ground state.
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4.2.2 Energy spectrum in the presence of a lateral electric field

Applying an in-plane electric field E removes the circular symmetry of the system.
An additional term corresponding to the electric field appears in the Hamiltonian
[3, 2], which acquires a form

H = HF + eERcosj . (52)

Now the angle j is counted from the direction of the electric field (geometry of the
problem is shown in Fig. 3). The field mixes electron states with different angular

Fig. 3 Relative directions of the external electric field E and the electron position vector R. (From
Ref. [3]).

momentum, which is not a good quantum number anymore. An eigenfunction of
the Hamiltonian (52), which maintains the 2p-periodicity in j , can be written as a
linear combination of the wavefunctions (50)

Yn (j) = Â
m

cn
meimj . (53)

Substituting the wavefunction (53) into the Schrödinger equation with the Hamilto-
nian (52), multiplying the resulting expression by e�imj and integrating with respect
to j leads to an infinite system of linear equations for the coefficients cn

m
h
(m+ f )2 �ln

i
cn

m +b
�
cn

m+1 + cn
m�1

�
= 0, (54)

where b = eER/2e1(0) and ln = en/e1(0), with en being the nth eigenvalue of the
Hamiltonian (52). It is apparent from Eq. (54) that all the properties of the ring
are periodic in magnetic flux. Therefore, it is sufficient to consider 0  f  1/2,
whereas the calculations for other values of f can be performed by shifting m in
Eq. (54) by an integer number. Interestingly, exactly the same analysis is applicable
to a nanohelix subjected to an electric field normal to its axis [112, 113, 114]. For a
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helix the role of magnetic flux is played by the electron momentum along the helical
line.

It should be emphasized that we consider a single-electron problem and we are
interested only in a few low-energy states. This treatment is relevant to nanoscale-
sized semiconductor QRs or type-II QDs discussed in Refs. [9, 10, 17, 36, 62, 18]
and neglects the many-body effects which are known to influence Aharonov-Bohm
oscillations in mesoscopic rings [34, 35]. The energy levels en as well as the coeffi-
cients cn

m can be found by cutting off the sum in Eq. (53) at a particular value of |m|.
The results of the numerical diagonalization of the matrix corresponding to the sys-
tem of linear equations (54), with a cut-off value of |m| = 11, are plotted in Fig. 4.
The same cut-off value was chosen in all numerical calculations presented in this

Fig. 4 (a) The energy spectrum of an infinitely narrow quantum rings of radius R pierced by a
magnetic flux F and subjected to an in-plane electric field E = 0.2e1(0)/eR. The electron energies
e are plotted versus the number of flux quanta F/F0. (b) Expanded view on a smaller energy scale.
(From Ref. [3]).

section, since a further increase of the matrix size does not lead to any noticeable
change in the results for the three lowest-energy states, which we are interested in.

In small electric fields, eER ⌧ h̄2/2MeR2, a significant change in the QR en-
ergy spectrum occurs only for the ground and two lowest excited states, when F is
close to an integer number of F0/2 (the points of degeneracy in the absence of the
electric field). The most prominent change is associated with the linear in electric
field splitting between the ground and first excited states for half-integer f . The less
pronounced quadratic in electric field splitting between the first and second excited
states occurs for integer f . These splittings can be easily understood with the help of
perturbation theory, as there is a non-zero matrix element of eERcosj between the
ground and the first excited state, whereas the two excited states are only repelled
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in the second order via the ground state. It is shown in Appendix 6.2, these essential
features of the low-energy spectrum are fully captured by considering small-size
matrices, which allow an analytical treatment: a two-by-two matrix for half-integer
f and a three-by-three matrix for integer f .

As one can see from Fig. 4, energy oscillations in the ground state are strongly
suppressed even for eER = 0.2h̄2/2MeR2. This suppression is a major source of
difficulty in spectroscopic detection of Aharonov-Bohm oscillations. However, as
we show in the next two Sections, apart from the ground-state energy there are other
physical quantities, such as a dipole moment of the QR and polarization properties
of the inter-level transitions, which have highly-pronounced magneto-oscillations
when the symmetry of the ring is reduced.

4.3 Magneto-oscillations of the quantum ring electric dipole

moment

In this Section we consider Aharonov-Bohm oscillations of the QR electric dipole
moment. If an electron occupies the nth state of the neutral single-electron QR with
a uniform positive background, or if a positive charge +e is placed at the center of
the QR (geometry of the problem is shown in Fig. 3), the projection of the dipole
moment on the direction of the lateral electric field [3, 2] is given by

Pn = eR
Z

|Yn|2 cosj dj. (55)

Substituting the wavefunction (53) into Eq. (55) yields the following expression for
Pn

Pn =
eR
2 Â

m
cn

m
�
cn

m�1 + cn
m+1

�
, (56)

where the coefficients cn
m can be found from the system of linear equations (54).

In the absence of an electric field, each of the electron states is characterized by a
particular value of angular momentum. The electron charge density is spread uni-
formly over the ring and there is no net dipole moment. The same result is given
by Eq. (56) - all the products cn

mcn
m±1 entering Eq. (56) vanish for any value of n

resulting in the QR dipole moment being equal to zero. Let us now consider what
happens to the ground state’s dipole moment in the presence of a weak electric field,
eER << h̄2/2MeR2. For F = 0, the ground state is a practically pure m = 0 state
with a tiny admixture of m 6= 0 wavefunctions. However, the situation changes dras-
tically near the points of degeneracy when the magnetic flux through the QR is equal
to any odd integer of F0/2. For a half-integer flux, even an infinitely small field
modifies entirely the wavefunction of the ground state. As shown in Appendix 6.2,
when f = 1/2 the ground state wavefunction angular dependence is well-described
by sin(j/2). Thus, the ground state electron density distribution becomes shifted
to one side of the ring, in the opposite direction to the applied electric field. Such a
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shift is energetically favorable and results in the value of the dipole moment being
close to eR. Simultaneously, the first excited state wavefunction angular dependence
becomes well-described by cos(j/2). For the excited state, the electron is localized
near the opposite side of the ring resulting in a dipole moment of the same magni-
tude as for the ground state but with the opposite sign.

The electron density distributions in the ground and first excited states, when
F = 0 and F = F0/2 and the degeneracy is lifted by a weak electric field, is shown
in Fig. 5. With changing magnetic flux the ground state density oscillates with a

Fig. 5 A polar plot of the electron density distribution in a single-electron quantum ring pierced
by the magnetic flux F = 0 (top row) and F = F0/2 (bottom row) and subjected to a weak in-
plane electric field, E ⌧ e1(0)/eR: (a) and (c) for the electron ground state; (b) and (d) for the first
excited state. (From Ref. [3]).

period F0 from an unpolarized to a strongly polarized distribution, resulting in the
corresponding dipole moment oscillations. However, the oscillations of the total
dipole moment of the QR should be partially compensated if the first excited state,
which carries a dipole moment opposite to the ground state’s dipole moment for a
flux equal to an odd number of F0/2, is also occupied due to a finite temperature.
The effect of temperature T can be taken into account by thermal averaging over all
states

hPi=
Â
n

Pn exp(�en/kBT )

Â
n

exp(�en/kBT )
. (57)
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The results of numerical calculations, using Eq. (57), for several temperature values
are shown in Fig. 6. The dipole moment oscillations, which are well-pronounced for
kBT ⌧ eER, become suppressed when the temperature increases.

Fig. 6 Magneto-oscillations of the dipole moment of a ring at various temperatures for E =
0.2e1(0)/eR. Different curves correspond to different temperatures in the range from T =
0.01e1(0)/kB to T = 0.41e1(0)/kB with the increment 0.1e1(0)/kB. The upper curve corresponds
to T = 0.01e1(0)/kB. (From Ref. [3]).

In this work we consider the limit of weak electric field only. Higher fields,
eER > h̄2/2MeR2, localize the ground state electron near one side of the ring even
in the absence of a magnetic field and the change of magnetic flux through the QR
can no longer influence the electron density distribution. For all values of F the
ground state wavefunction consists of a mixture of functions with different angular
momenta, ensuring that this state is always strongly polarized. The suppression of
the dipole moment oscillations with increasing electric field can be seen in Fig. 7
where the upper curves, corresponding to higher electric fields and higher dipole
moments, exhibit less pronounced oscillations. The energy oscillations for several
lowest states are known to be completely suppressed in strong electric fields [111].

At this point it is instructive to discuss conditions needed for an experimental
observation of electric dipole moment magneto-oscillations in QRs. A typical ra-
dius for experimentally attainable QRs [9, 10, 17] is R ' 20nm. This gives the
characteristic energy scale of the inter-level separation e1(0)' 2meV (correspond-
ing to 0.5THz) for an electron of effective mass Me = 0.05me. For a ring with
R = 20nm, the magnitude of a magnetic field producing a flux F = F0 is B ' 3T.
Therefore, a further decrease of the QR radius would require magnetic fields which
are hard to achieve. A typical electric field needed for pronounced dipole moment
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Fig. 7 Magneto-oscillations of the dipole moment of a ring at various magnitudes of the in-plane
electric field for T = 0.01e1(0)/kB. Different curves correspond to different magnitudes of the elec-
tric field in the range from E = 0.2e1(0)/eR to E = 1.0e1(0)/eR with the increment 0.2e1(0)/eR.
The upper curve corresponds to E = 1.0e1(0)/eR. (From Ref. [3]).

oscillations is E = 0.1e1(0)/eR ' 104 V/m, which can be easily created. By far
the most difficult condition to be satisfied is the requirement on the temperature
regime, T < eER/kB. For the discussed electric field and ring radius this condi-
tion becomes T < 2K. In principle such temperatures can be achieved in laboratory
experiments and magneto-oscillations can be detected, for example, in capacitance
measurements. However, for practical device applications, such as quantum-ring-
based magnetometery, higher temperatures are desirable. In the next section we
consider a process, which is less sensitive to the temperature-induced occupation
of excited states.

4.4 Terahertz transitions and optical anisotropy in quantum rings

In this Section we study the influence of the in-plane electric field on polarization
properties of radiative inter-level transitions in Aharonov-Bohm QRs. We restrict
our consideration to linearly-polarized radiation and dipole optical transitions only1.
The case of circular polarization is briefly discussed at the end of the Section.

1 For the theoretical background on the electric dipole approximation for optical transitions please
see Section 3.3 of this chapter.
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The transition rate Ti f between the initial (i) and final ( f ) electron states is gov-
erned by the matrix element Pi f = h f |eP̂|ii , where P̂ is the dipole moment operator
and e is the projection of the radiation polarization vector onto the plane of the QR.
For the model of an infinitely-narrow QR

Pi f (q) = eR
Z

Y ⇤
f Yi cos(q �j)dj , (58)

where q is the angle between the vector e and the in-plane electric field E. The
geometry of the problem is shown in Fig. 8.

Fig. 8 Relative directions of the external electric field E and the projection e of the THz radiation
polarization vector onto the quantum ring’s plane. (From Ref. [3]).

Substituting the electron wavefunctions Yi and Yf , given by Eq. (53), into
Eq. (58) yields

Ti f ⇠ P2
i f (q) = P�

i f
2
+P+

i f
2 �2P�

i f P+
i f cos2q , (59)

where
P�

i f =
eR
2

����Â
m

c f
mci

m�1

���� (60)

and
P+

i f =
eR
2

����Â
m

c f
mci

m+1

���� . (61)

The double angle 2q entering Eq. (59) ensures that the transition rate does not de-
pend on the sign of e.

Let us consider transitions between the ground state and the first excited state
of the Aharonov-Bohm QR in the limit of a weak in-plane electric field, eER ⌧
h̄2/2MeR2. Away from the points of degeneracy the ground and the first excited
states are characterized by a particular value of m and either P�

i f or P+
i f given by

Eqs. (60)-(61) vanishes. As a result, the angular dependence in Eq. (59) disappears
and the transitions have no linear polarization. The picture changes drastically when
F is equal to an integer number of F0/2. Then P�

i f = P+
i f and therefore the rate of
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transitions induced by the radiation polarized parallel to the direction of the in-plane
electric field (q = 0) is equal to zero, Ti f = Tk = 0. Simultaneously T?, the rate of
transitions induced by the light polarized perpendicular to the direction of the in-
plane electric field (q = p/2), reaches its maximum possible value. This leads to
the strong optical anisotropy of the system. The results of the calculations for the
whole range of F are shown in Fig. 9. Very sharp peaks at F equal to an integer

Fig. 9 Magneto-oscillations of the degree of polarization for the transitions between the ground
state and the first excited state. Here Tk and T? correspond to the intensities of transitions polarized
parallel (e k E) and perpendicular (e ? E) to the direction of the in-plane electric field, respectively.
(From Ref. [3]).

number of F0 are the result of splitting between the first and second excited states,
which were degenerate with energy e1(0) in the absence of an external electric field
(see Fig. 4). This splitting occurs in the second order in eER and the spectacular
sharpness of the peaks is due to the very fast change in the electron first and second
excited states wavefunctions when one moves away from the point of degeneracy
(for details see Appendix 6.2). The optical transitions between the electron ground
and second excited states are also linearly polarized, but with q = 0, so that the
polarization of these transitions is normal to the polarization of transitions between
the electron ground and first excited states. Because these two peaks are very closely
separated for F = 0, the polarization effects are strongly suppressed if the finite
linewidth of the radiation is taken into account.

In the case of circularly polarized light, the degree of polarization oscillates as
well. Inter-level transitions between the ‘pure’ states, characterized by the definite
angular momentum values differing by one, are either right-hand or left-hand po-
larized. However, one can easily see that transitions involving the states, which are
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strongly ‘mixed’ when the flux is an integer number of F0/2, have the same proba-
bilities for both circular polarizations. Thus, the magnetic-field-induced optical chi-
rality of QRs oscillates with the flux.

The total probabilities of the inter-level transitions indeed depend on the pop-
ulations of the states involved. However, the discussed oscillations of the degree
of polarization do not depend on temperature as the selection rules for the optical
transitions are temperature-independent. This effect allows Aharonov-Bohm rings
to be used as room-temperature polarization-sensitive detectors of THz radiation or
optical magnetometers.

4.5 Results and discussion

It is demonstrated that a lateral electric field, which is known to suppress Aharonov-
Bohm oscillations in the ground state energy spectrum of a QR, results in strong
oscillations of other physical characteristics of the system. Namely, the electric-
field-induced dipole moment oscillates as a function of the magnetic flux piercing
the QR, with pronounced maxima when the flux is equal to an odd number of one
half of the flux quantum. This effect is caused by lifting the degeneracy of states with
different angular momentum by arbitrary small electric fields. It should be empha-
sized that the discussed effect is not an artifice of the infinitely-narrow ring model
used in the calculations, but it persists in finite-width rings in a uniform magnetic
field. Indeed, the essential feature required for this effect is the degeneracy of the
states with the angular momenta differing by one at certain magnetic field values,
which is known to take place for finite-width rings as well [57, 58, 59, 60, 115].

Future observation of the dipole moment magneto-oscillations would require
careful tailoring of the QR parameters and experiment conditions. For example,
the size of the QR should not exceed the electron mean free path but should be large
enough so that, for experimentally attainable magnetic fields, the flux through the
ring is near the flux quantum. The electric field should not be too large to avoid
polarizing the QR strongly in the absence of a magnetic field, but it should be large
enough to achieve a splitting between the ground and first excited states exceeding
kBT . Estimates presented in this section show that all these conditions can be met
in existing QR systems. However, the temperature constraint constitutes the major
obstacle for any potential applications outside the low-temperature laboratory.

The temperature restrictions are less essential for another predicted effect - giant
magneto-oscillations of the polarization degree of radiation associated with inter-
level transitions in Aharonov-Bohm QRs. Notably, these transitions for the QRs
satisfying the remaining constraints should occur at THz frequencies. Creating re-
liable, portable and tunable sources of THz radiation is one of the most formidable
problems of contemporary applied physics. The unique position of the THz range
in between the frequencies covered by existing electronic or optical mass-produced
devices results in an unprecedented variety of ideas aiming to bridge the so-called
‘THz gap’. For example, the proposed methods of down-conversion of optical exci-
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tation range from creating ultra-fast saturable absorbers [116] to utilizing magnetic-
field-induced energy gap in metallic carbon nanotubes [117, 118, 119, 120] to recent
proposals of exciting THz transitions between exciton-polariton branches in semi-
conductor microcavities [121, 122, 123]. Arguably, the use of QRs for THz gen-
eration and detection has its merits, since their electronic properties can be easily
tuned by external fields. The following scheme for using Aharonov-Bohm QRs as
tuneable THz emitters can be proposed. Inversion of population in semiconductor
QRs or type II QDs can be created by optical excitation across the semiconduc-
tor gap. Angular momentum and spin conservation rules do not forbid the creation
of an electron in the first excited state as long as the total selection rules for the
whole system, consisting of an electron-hole pair and a photon causing this transi-
tion, are satisfied. Terahertz radiation will be emitted when the electron undergoes
a transition from the excited to the ground state of the QR. As was shown in the
previous Sections both the frequency and polarization properties of this transition
can be controlled by external magnetic and electric fields.

Other potential applications of the discussed effects are in the burgeoning areas
of quantum computing and cryptography. The discussed mixing of the two states,
which are degenerate in the absence of electric field, is completely controlled by the
angle between the in-plane field and a fixed axis. This brings the potential possibility
for creating nanoring-based qubits, which do not require weak spin-orbit coupling
between the electric field and electron spin. Arrays of the Aharonov-Bohm QRs can
also be used for polarization sensitive single-photon detection, which is essential for
quantum cryptography.

5 Quantum rings in quantized electromagnetic fields.
Aharonov-Bohm Quantum Rings Embedded Into
High-Quality Terahertz Microcavities.

5.1 Introduction

Progress in nanolithography and epitaxial techniques has resulted in burgeoning de-
velopments in the fabrication of micro-scale optical resonators, known as optical
microcavities. If the quality factor of a cavity is sufficiently large, the formation of
hybrid light-matter excitations occurs. Being first observed two decades ago [124],
the strong coupling regime is now routinely achieved in different kinds of microcav-
ities [125]. From the point of view of fundamental physics, this regime is interest-
ing for investigation of various collective phenomena in condensed matter systems
such as the high-temperature Bose-Einstein condensation (BEC) [126, 127] and su-
perfluidity [128]. From the viewpoint of applications it opens a way towards to the
realization of optoelectronic devices of the next generation [129]: room-temperature
polariton lasers [130], polarization-controlled optical gates, [131], effective sources
of THz radiation [132, 123, 121], and others.
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Several applications of the strong coupling regime were also proposed for quan-
tum information processing [133, 134, 135]. In this case one should be able to tune
the number of emitted photons in a controllable way. This is hard to achieve in
planar microcavities, where the number of elementary excitations is macroscopi-
cally large, but is possible in microcavities containing single quantum dots, where
the quantum dot exciton can be coupled to a confined electromagnetic mode pro-
vided by a micropillar (etched planar cavity) [80], a defect of the photonic crys-
tal [79], or a whispering gallery mode [81, 136]. That is why the strongly coupled
systems based on quantum dots have attracted particular attention recently. In the
strong coupling regime the system possesses a rich multiplet structure, which maps
transitions between quantized dressed states of the light-matter coupling Hamilto-
nian [80, 79, 81, 82, 102, 137, 138, 139, 140].

In this section we examine a single-mode THz microcavity [141, 142, 143, 144]
with an embedded Aharonov-Bohm quantum ring, which is pierced by a magnetic
flux and subjected to a lateral electric field. We restrict our analysis to linearly po-
larized microcavity radiation only. The geometry of the system is shown in Fig. 10.
The emission properties of such a system under continuous incoherent pumping

Fig. 10 An Aharonov-Bohm quantum ring embedded into a single-mode THz microcavity. (From
Ref. [5]).

are studied theoretically. We calculate the luminescence spectrum of the system us-
ing the master equation techniques for several combinations of the applied external
electric and magnetic fields. We demonstrate that the resonance which is best for
exploring quantum features of the system [138] can be achieved by means of tuning
the magnitude of the lateral electric field. An additional degree of control can be
achieved by changing the angle between the polarization plane of the optical pump
and the lateral electric field. As we show, the quantum ring-microcavity coupling
strength depends strongly on the above mentioned angle.
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5.2 Quantum rings in high-quality terahertz microcavities

5.2.1 Aharonov-Bohm quantum rings as two-level photon emitters

In this Section we briefly revise the energy spectrum and optical properties of a
single-electron Aharonov-Bohm QR pierced by a magnetic flux F and subjected to
a lateral electric field E, which were studied in Section 4. We then show how the
single-electron Aharonov-Bohm QR can be utilized as a two-level, single-photon
emitter.

In the absence of the external electric field the eigenfunctions of an infinitely
narrow Aharonov-Bohm QR of a radius R are given by

ym (j) = eimj/
p

2p , (62)

where j is the polar angle coordinate and m= 0,±1,±2... is the angular momentum
quantum number. The corresponding eigenvalues are defined by

em ( f ) = eQR (m+ f )2 ,

where eQR = h̄2/2MeR2 is the energy scale of the interlevel separation in the QR, Me
is the electron effective mass and f = F/F0 is the number of flux quanta piercing
the QR (F0 = h/e). For experimentally attainable QRs, eQR corresponds to the THz
frequency range.

When the lateral electric field is applied, the modified electron eigenfunctions
can be expressed as a linear combination of the unperturbed wave functions (62):

Yn (j) = Â
m

cn
meimj . (63)

Substituting the wave function (63) into the Schrödinger equation with the Hamil-
tonian containing a term which describes the presence of the lateral electric field,
multiplying the resulting expression by e�imj , and integrating with respect to the
angle j results in an infinite system of linear equations for the coefficients cn

m (for
details see Section 4.2)

h
(m+ f )2 �ln

i
cn

m +b
�
cn

m+1 + cn
m�1

�
= 0, (64)

where b = eER/2eQR is the normalized strength of the lateral electric field and
ln is an energy eigenvalue normalized by eQR. It can be seen from the system of
equations (64) that all the QR quantities are periodic in the magnetic flux F with
the period equal to F0. There is also an apparent symmetry with respect to the
change of the sign of F . Therefore, in what follows we will consider only the case
of 0  F  F0/2.

It it shown in Appendix 6.2 that in the limit of a weak in-plane electric field,
eER ⌧ eQR, all essential features of the first three states of the QR are fully captured
by the following 3⇥3 system of linear equations:
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In what follows we will be interested in the transitions between the ground and the
first excited states in the QR only. However, in order to obtain accurate ground and
first excited states eigenenergies and eigenfunctions all three listed states should be
considered. The system of linear equations (65) can be reduced to a cubic equation
for ln, which yields the following eigenvalues l1 < l2 < l3:

l1 =�2/3
p

1+12 f 2 +6b 2 cos(a/3)+ f 2 +2/3, (66)

l2 =�2/3
p

1+12 f 2 +6b 2 cos(a/3�2p/3)+ f 2 +2/3, (67)

l3 =�2/3
p

1+12 f 2 +6b 2 cos(a/3+2p/3)+ f 2 +2/3, (68)

where

cosa =
1�36 f 2 +9b 2

(1+12 f 2 +6b 2)3/2 .

The set of corresponding eigenvectors (non-normalized) is given by substituting
appropriate values of ln into
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The energy spectrum for the electron ground and the first excited states defined by
Eq. (66) and Eq. (67) respectively for b = 0.1 and 0  f  1/2 is plotted in Fig. 11.
Notably, the 3⇥ 3 system of equations (65) provides a very good accuracy for the

Fig. 11 The normalized energy spectrum for the electron ground and the first excited states in the
quantum ring as a function of dimensionless parameter f for b = 0.1. (From Ref. [5]).

ground and the first excited states when b . 1 (i.e. eER . eQR). A numerical check
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shows that the further increase in the system of linear equations, Eq. (64), does not
provide any noticeable change in the results. A similar analysis is applicable to a
nanohelix with an electric field applied normal to its axis. For a helix, the role of
magnetic flux in the absence of a magnetic field is played by the electron momentum
along the helical line [112, 145, 113, 114].

The QR can be represented as a two-level system with the energy gap between
the ground state |gi (n = 1) and the excited state |ei (n = 2) denoted by D . From
Eqs. (66)–(67), it is clear that D depends on both the external electric field E, applied
in the QR plane, and the magnetic flux F , piercing the QR. In particular, when F = 0
(F = F0/2), one obtains D/eQR = 1+2b 2 (D/eQR = 2b ).

Another quantity, which is needed for further calculations, is the product of the
light polarization vector e and the matrix element d =

⌦
e
��d̂
��g
↵
=

⌦
g
��d̂
��e
↵

of the
dipole moment calculated between the ground state |gi and the excited state |ei. For
linearly polarized light this product is given by the following integral:

d · e = eR
Z 2p

0
YeYg cos(q �j)dj , (70)

where Yg, Ye are the ground and the first excited state wave functions defined by
Eq. (63) and q is the angle between e and E.

Substituting eigenfunctionsYg,Ye given by Eq. (63) into Eq. (70) and performing
the integration with respect to the angle j we obtain

d · e =
�
d2
�+d2

+�2d�d+ cos2q
�1/2 , (71)

where
d� =

eR
2

��ce
0cg

�1 + ce
+1cg

0
�� , (72)

and
d+ =

eR
2

��ce
�1cg

0 + ce
0cg

+1
�� . (73)

Later in this work we use Eqs. (71)–(73) with coefficients ce, cg obtained from
Eq. (69) to calculate the QR-MC coupling strength. A detailed analysis of Eq. (69)
and Eqs. (72)–(73) shows that a noticeable q -dependence in Eq. (71) occurs only
when f = 0 or f = 1/2, as d� vanishes otherwise.

5.2.2 The Jaynes-Cummings Hamiltonian and the Master Equation

The full Hamiltonian describing the system of a QR coupled to a single-mode THz
MC is the Jaynes-Cummings [146]2

HJC = Ds†s + h̄wMCa†a+G
�
s†a+sa†� , (74)

2 For more details on MC-2LE interaction Hamiltonian, i.e. the Jaynes-Cummings Hamiltonian,
please refer to Sections 3.2.1-3.2.3 of this chapter.
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where wMC is the MC eigenfrequency, G is the QR-MC coupling constant, a† is the
MC photon creation operator, a is the MC photon annihilation operator, s† = (sx +
isy)/2 is the QR electron creation operator, s = (sx � isy)/2 is the QR electron
annihilation operator, and sx, sy are the Pauli matrices acting in the space of |gi
and |ei states. The frequency of the MC mode and the frequency of the transition
between the QR states are assumed to be close enough to allow the use of the rotating
wave approximation. [147, 148] If the MC mode is linearly polarized, G is given by

G =�(d · e)
p

h̄wMC/2e0V , (75)

where d · e is given by Eq. (71), e0 is the vacuum dielectric permittivity, V is
the quantization volume, which can be estimated as V ⇡ (lMC/2)3, and lMC =
2pc/wMC is the MC characteristic wavelength. When the magnetic flux piercing the
QR is equal to an integer number of half-flux quanta, G strongly depends on the an-
gle q between the projection of the radiation polarization vector onto the QR plane
and the applied lateral electric field.

The eigenvalues of the Hamiltonian (74) are the same as in the case of a single-
mode MC with embedded QD, whose excitations obey fermionic statistics [138,
147].

E±
N = h̄wMC (N �1/2)+D/2±

q
(h̄wMC �D)2 /4+NG 2, (76)

where N is the total number of electron-photon excitations in the system, i.e. the
number of photons inside the MC if the electron is in the ground state. The corre-
sponding eigenfunctions X ±

N can be expressed as a linear combination of the com-
bined electron-photon states |g,Ni= |gi⌦ |Ni and |e,N �1i= |ei⌦ |N �1i, which
define both the QR state and the MC photon occupation number. Using this basis we
solve a 2⇥2 system of linear equations which corresponds to the Hamiltonian (74)
and obtain

X ±
N = K±

g,N |g,Ni+K±
e,N |e,N �1i , (77)

where

K±
g,N =

p
NGq�

E±
N �Nh̄wMC

�2
+NG 2

, (78)

and

K±
e,N =

E±
N �Nh̄wMCq�

E±
N �Nh̄wMC

�2
+Nh̄G 2

. (79)

The main advantage of using a QR instead of a QD is the opportunity to control both
the energy gap D between the first two states of the QR and the QR-MC coupling
constant G by changing the external electric and magnetic fields. These fields can
be used to achieve the resonant condition D = h̄wMC and provide easy means of
performing a transition from the strong to the weak coupling regime within the
same system [138].

The eigenvalues E±
N defined by Eq. (76) form the so-called “Jaynes-Cummings

ladder” and the emission spectrum of the system, which is observed outside of
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the MC, is defined by optical transitions between the states with total number of
electron-photon excitations N different by unity (see Fig. 12). Inside a non-ideal

Fig. 12 Schematic diagram of the energy and emission spectra of the coupled QR-MC system in
the resonant case D = h̄wMC: (a) the “Jaynes-Cummings ladder”; (b) the Mollow triplet; (c) the
Rabi doublet.

MC, a photon has a limited lifetime and when the photon leaks out, one can measure
its frequency. This provides a direct access to the quantized coupled electron-photon
states of the system.

In order to describe any realistic experiment measuring the QR-MC emission
spectrum one should introduce pump and decay in the system. We model the sys-
tem dynamics under incoherent MC pumping and account for dissipation processes
using the master equation approach for the full density matrix of the system r (see,
e.g., Refs. [147, 148])3. The master equation reads

∂r
∂ t

=
i
h̄
[r,HJC]+L MC

P r +L MC
g r +L QR

g r , (80)

where L MC
P , L MC

g are the Lindblad terms, which account for the MC pump and
decay, and the Lindblad term L QR

g describes non-radiative transitions of the QR
electron from the excited state |ei to the ground state |gi. In the explicit form these
three terms are given by

L MC
P r =

PMC

2
(2a†ra�aa†r �raa† +2ara† �a†ar �ra†a),

L MC
g r =

gMC

2
(2ara† �a†ar �ra†a),

L QR
g r =

gQR

2
(2srs† �s†sr �rs†s),

3 For more details on the master equation approach for the full density matrix of a general MC-2LE
system please see Sections 3.2.4-3.2.5 of this chapter.
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where PMC is the intensity of the incoherent MC pumping and gMC, gQR are the
lifetimes of the photonic and the QR excitations respectively. Due to the balance
between the pump and the decay, after some time a steady state is established. We
denote the corresponding density matrix as rSS. The steady state density matrix can
be found by solving numerically Eq. (80) with all the matrices truncated. When per-
forming the truncation, all the states which can be excited as a result of the pumping
should be accounted for.

5.2.3 Emission spectrum of the system under incoherent pumping

In the presence of the pump and the decay and after establishing an equilibrium,
the system is in a mixed state, which is characterized by the full density matrix
rSS. If rSS is written in the basis of eigenfunctions (77), the density matrix diag-
onal element rSS

II gives the probability of the system to be in the Ith state. At low
pumping, PMC ⌧ G , and in the case of a high-Q system, gMC,gQR ⌧ G , which is
the best regime to elucidate quantum coupling effects [138], the emission spectrum
can be calculated using the so-called manifold method, which has been proved to
provide qualitatively accurate results avoiding heavy numerical calculations (see,
e.g., Refs. [138, 140], and [149]). In this approximation the QR and MC emission
spectra are given by

SQR (w)⇡ 1
p Â

I,F

���MQR
IF

���
2

rSS
II GIF

(h̄WIF � h̄w)2 +G 2
IF

, (81)

SMC (w)⇡ 1
p Â

I,F

��MMC
IF

��2 rSS
II GIF

(h̄WIF � h̄w)2 +G 2
IF

, (82)

where
��MQR

IF
��2 = |hXF , |s |XIi|2,

��MMC
IF

��2 = |hXF |a|XIi|2, h̄WIF = EI �EF , Xi
and X f are the QR-MC initial and final states eigenfunctions defined by Eq. (77),
Ei and E f are the QR-MC initial and final states eigenenergies defined by Eq. (76),
and GIF is given by

GIF =
gQR

2 Â
J

⇣��MQR
JI

��2 +
��MQR

JF
��2
⌘
+

gMC

2 Â
J

⇣��MMC
JI

��2 +
��MMC

JF
��2
⌘

+
PMC

2 Â
J

⇣��MMC
JI

��2 +
��MMC

JF
��2 +

��MMC
IJ

��2 +
��MMC

FJ
��2
⌘

.

In Eqs. (81)-(82) SQR and SMC correspond to photons of two different origins,
which can be detected outside of the MC by an external observer: the direct emission
of the QR and the leaking MC photons. In the first case a photon outside of the MC
is created as a result of the QR electron transition from the excited state |ei to the
ground state |gi and in the second case the photon is created due to annihilation of a
MC photon. Substituting X ±

N from Eq. (77) into the expressions for
��MIF

��2 yields
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��MQR
IF

��2 =
���K±

g,NF
K±

e,NI

���
2

dNF ,NI�1,

��MMC
IF

��2 =
���
p

NIK±
g,NF

K±
g,NI

+
p

NF K±
e,NF

K±
e,NI

���
2

dNF ,NI�1.

It should be noted that only the transitions between the coupled electron-photon
states with the total number of excitations differing by unity are allowed.

In the resonant case D = wMC, for transitions from the Nth state to the (N �1)th
state we obtain ���MQR

±!⌥

���
2
= 1/4, (83)

���MQR
±!±

���
2
= 1/4, (84)

and ��MMC
±!⌥

��2 =
���
p

N �
p

N �1
���
2
/4, (85)

��MMC
±!±

��2 =
���
p

N +
p

N �1
���
2
/4, (86)

with corresponding eigenfrequencies given by

W±!⌥ = wMC ±G
⇣p

N +
p

N �1
⌘
/h̄, (87)

W±!± = wMC ±G
⇣p

N �
p

N �1
⌘
/h̄. (88)

One can see that the observed emission spectrum consists of two symmetric inner
peaks at frequencies (88) and two symmetric outer peaks at frequencies (87). To-
gether, these peaks form the so-called “Jaynes-Cummings fork”. From Eqs. (83)–
(86) it follows that when the total number of electron-photon excitations in the initial
state N = 1, both SQR and SMC have a shape of the Rabi doublet (see Fig. 12 (c)),
and in the case of large excitation numbers, N � 1, SQR is in the form of the Mollow
triplet (see Fig. 12 (b)) while SMC collapses into a single lasing peak.

5.3 Results and discussion

In this section we use the formalism which was developed in the previous Sec-
tions to calculate emission spectra of the QR-MC system in the presence of a mag-
netic flux F piercing the QR and a lateral electric field E. The QR-MC system has
apparent advantages for exploring the quantum nature of light-matter coupling in
nanostructured systems compared to the well-studied QD-based setup. Namely, the
parameters of the system can be more easily tuned by external fields. Between all
possible combinations of the applied magnetic and electric fields there are two cases
of considerable interest: (a) F = 0, e ? E and (b) F = F0/2, e ? E. In both cases,
the energy gap between the QR states is tunable by the strength of the lateral elec-
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tric field. From Eqs. (66)–(67) we get D/eQR = 1� 2b 2 (D/eQR = 2b ) for F = 0
(F = F0/2). Thus, the energy gap D can be easily adjusted to coincide with the
energy of the MC mode h̄wMC. From Eqs. (71)–(73) and Eq. (75) one can see that
when F = 0 or F = F0/2 the QR-MC coupling constant G strongly depends on
the angle q between the direction of the external electric field and the projection of
the MC mode polarization vector onto the QR plane. If e ? E, the coupling con-
stant G reaches its maximum possible value, and if e k E, the MC mode and the QR
are completely uncoupled. By changing the direction of the lateral electric field one
acquires additional means of control of the emission spectrum of the system.

The quantum structure of the Jaynes-Cummings states discussed in the previous
Section is known to be observed only in the low dissipation regime [138]. There-
fore, it is natural to consider a QR embedded into a high-Q THz MC under a weak
incoherent pumping. Similar to Ref. [138], we choose a MC with the decay rate
gMC/G = 0.1 and a QR with the decay rate gQR/G = 0.01. The QR decay rate is
chosen to be much smaller than the MC decay rate, as is the case in most experi-
mental systems [80, 82]. In all the calculations we chose either PMC/G = 0.005 or
PMC/G = 0.095. These conditions satisfy the applicability criteria of the manifold
method for modelling the emission spectrum of the systems.

In order to estimate experimental conditions for the observation of the predicted
emission spectra we use the following values of the other system parameters: a typ-
ical radius of experimentally attainable [9, 10, 17] QRs, R = 20nm and the electron
effective mass M = 0.05me. This gives the energy scale of the QR interlevel separa-
tion eQR ' 2meV and the magnitude of the magnetic field, which produces a mag-
netic flux through the QR equal to a half of the flux quantum, B ' 2T. Unless speci-
fied otherwise, all the calculations are made in the presence of a weak lateral electric
field E ? e with the magnitude E = 0.1eQR/eR = 2 · 104V/m. The QR-MC cou-
pling constant can now be estimated using Eq. (75). we obtain G = 8.3 · 10�4meV
(G = 1.2 · 10�3meV) for F = 0 (F = F0/2) which results in the MC Q-factor
requirement Q = h̄wMC/gMC ⇡ 16000 (Q ⇡ 5000). THz microcavities with the Q-
factor of this order of magnitude have already been achieved [142].

We start with calculations of the emission spectrum of the system for PMC/G =
0.005 and PMC/G = 0.095 in the resonant case, h̄wMC =D . The magnetic flux pierc-
ing the QR is either F = 0 or F = F0/2. Results of these calculations are shown
in Fig. 13. Both the direct QR emission spectrum, SQR, and the MC emission spec-
trum SMC are plotted. When PMC/G = 0.005, there are two dominant peaks (the
linear Rabi doublet) in SQR and SMC at the frequencies w = ±G /h̄, which corre-
spond to the transitions between the two N = 1 states and the ground N = 0 state.
With increasing pumping, PMC/G = 0.095, the higher, N > 1, states are excited. The
intensity of the Rabi doublet is decreased while the quadruplet peaks correspond-
ing to the transitions between the N = 2 and N = 1 states emerge. Only the inner
quadruplet peaks in SQR and SMC can be seen in the selected energy range. It should
be mentioned that the outer peaks in the MC emission spectrum, SMC, become sup-
pressed with increasing N, as can be seen from the expression for the corresponding
matrix elements, Eq. (85).
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Fig. 13 Emission spectrum of the quantum ring-microcavity system in the presence of a lateral
electric field E = 2.00⇥104V/m for PMC/G = 0.005 and PMC/G = 0.095. The microcavity mode
is in resonance with the quantum ring transition. The upper row (brown) corresponds to the mi-
crocavity emission and the lower row (red) corresponds to the direct quantum ring emission. The
magnetic flux piercing the quantum ring is either F = 0 or F = F0/2. The emission frequencies
are normalized by the quantum ring-microcavity coupling constant G /h̄ and centred around wMC .
(From Ref. [5]).

A different type of emission spectrum can be observed away from the resonance.
This can be achieved for the same system by changing the magnitude of the lateral
electric field. In Figs. 14–15 we plot SMC and SQR when D 6= h̄wMC for several values
of E. Fig. 14 corresponds to F = 0, whereas Fig. 15 corresponds to F = F0/2. Due
to the fact that there are non-zero probabilities of finding the system in states with
different N, the emission spectrum has a pronounced multiplet structure. The MC
pumping rate is taken as PMC/G = 0.095. One can clearly see the avoided crossings
in the plotted emission spectra, manifesting that the system is in the strong coupling
regime. When F = F0/2 and the detuning between D and h̄wMC is of the order of
G , the direct QR emission spectrum has the most intensive peaks at the frequencies
close to w = D/h̄. This indicates that the QR is almost uncoupled from the MC. The
more pronounced changes in the emission

spectra in Fig. 15 compared to Fig. 14 can be explained by different dependences
of the energy gap D on the magnitude of the lateral electric field E: when F = F0/2
the dependence is linear in E and when F = 0 the dependence is quadratic in E.

For a nearly zero flux through the QR, a small change of the flux results in sig-
nificant changes in SMC and SQR, as the presence of a weak magnetic field affects
strongly both the QR gap D and the QR-MC coupling constant G . The dependence
of the QR gap D on the magnetic flux F piercing the QR can be seen from Fig. 11,
while the QR-MC coupling constant G magnetic flux dependence can be easily cal-
culated using Eqs. (71)–(73) and Eq. (75). In Fig. 16 we plot SMC and SQR for several
values of F near zero. The MC pumping rate is taken as PMC/G0 = 0.095, where
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Fig. 14 Anticrossing in the emission spectrum of the quantum ring-microcavity system at various
magnitudes of the external lateral electric field E from 1.98⇥104V/m to 2.02⇥104V/m with the
increment 50V/m: (a) microcavity emission spectrum (brown), (b) direct quantum ring emission
spectrum (red). The magnetic flux piercing the quantum ring F = 0. The resonance case D = h̄wMC
corresponds to E = 2.00⇥104V/m. The microcavity pumping rate PMC/G = 0.095. The emission
frequencies are normalized by the quantum ring-microcavity coupling constant G /h̄ and centred
around wMC . (From Ref. [5]).

G0 denotes the value of the QR-MC coupling constant for F = 0. The plotted emis-
sion spectra incorporate both the anticrossing behaviour due to detuning of the QR
transition energy from the energy of the MC mode and the changes in the multiplet
structure owing to varying the QR-MC coupling strength.

Finally, we calculate the emission spectrum of the QR-microcavity system alter-
ing the angle q between the direction of the applied electric field and the projection
of the microcavity mode polarization vector onto the QR plane. Again, the magnetic
flux piercing the QR is either F = 0 or F = F0/2. The system is in the resonance,
D = h̄wMC. The microcavity pumping rate is taken as PMC/Gp/2 = 0.005, where
Gp/2 denotes the value of the QR-microcavity coupling constant for q = p/2. The
results are plotted in Fig. 17. One can see that as the angle q is changed, the emission
peaks shift towards the microcavity eigenfrequency wMC, which can be explained
by reducing the coupling strength G . This effect provides an additional way to con-
trol the frequency of the satellite peaks in the QR-microcavity emission spectrum
and allows a purely spectroscopic measurement of the pump polarization.

In this work we dealt exclusively with the QR inter-subband transitions. How-
ever, a similar analysis should be possible for inter-band optical transitions, for
which matrix elements and energies can also be tuned by the external fields more
easily than in the widely studied QD systems.
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Fig. 15 Anticrossing in the emission spectrum of the quantum ring-microcavity system at various
magnitudes of the external lateral electric field E from 1.98⇥104V/m to 2.02⇥104V/m with the
increment 50V/m: (a) microcavity emission spectrum (brown), (b) direct quantum ring emission
spectrum (red). The magnetic flux piercing the quantum ring F = F0/2. The resonance case D =
h̄wMC corresponds to E = 2.00⇥ 104V/m. The microcavity pumping rate PMC/G = 0.095. The
emission frequencies are normalized by the quantum ring-microcavity coupling constant G /h̄ and
centred around wMC . (From Ref. [5]).

In conclusion, we have analyzed the emission spectrum of an Aharonov-Bohm
QR placed into a single-mode quantum MC. We have shown that the emission spec-
trum in the strong coupling regime has a multiplet structure and can be tuned by
the variation of the magnetic field piercing the QR and by changing the strength
and direction of the applied lateral electric field. Thus, it is demonstrated that a MC
with an embedded QR is a promising system for use as a tunable optical modula-
tor in the THz range. The QR-MC system, which allows manipulation of quantum
states with external fields, might also prove to be useful for investigating dephasing
mechanisms and for engineering and exploring enhanced light-matter interactions
for novel quantum investigations.

6 Conclusions and outlook. Bridging the THz gap with
Aharonov-Bohm quantum rings.

6.1 Conclusions

In our work we studied the interaction of Aharonov-Bohm quantum rings with clas-
sical and quantized electromagnetic fields.
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Fig. 16 Anticrossing in the emission spectrum of the quantum ring-microcavity system at various
magnitudes of the magnetic flux F piercing the quantum ring from 0 to 0.004F0 with the increment
5⇥ 10�4F0 and in the presence of the lateral electric field E = 2.00⇥ 104V/m: (a) microcavity
emission spectrum (brown), (b) direct quantum ring emission spectrum (red). The resonance case
D = h̄wMC corresponds to F = 0. The emission frequencies are normalized by the value of the
quantum ring-microcavity coupling constant calculated for F = 0 (G0) and centred around wMC .
The microcavity pumping rate PMC/G0 = 0.095. (From Ref. [5]).

In Section 4 we examined an infinitely-narrow, single-particle quantum ring
pierced by a magnetic flux and subjected to a static lateral electric field [3, 2]. This
model is relevant to nanoscale-sized type-I quantum rings and type-II quantum dots,
such as those studied in Refs. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. We show that the applied electric field,
which is known to suppress magneto-oscillations in the ground state of a single-
particle quantum ring [110, 111], results in strong oscillations of the ring electric
dipole moment and selection rules for optical transitions between the ground and
first excited states of the quantum ring. We attribute these phenomena to electric-
field induced mixing of quantum ring states with different angular momenta, which
occurs when magnetic flux through the quantum ring is equal to a half-integer of
the magnetic flux quantum. It is shown that even a weak electric field causes this
mixing. Most of the results obtained here for the static in-plane electric field can be
easily generalized to the case of the rotating field by a proper change of the coordi-
nates system [4].

It should be also emphasised that calculated effects are not an artifice of the
infinitely-narrow ring model used in our calculations, but persist in finite-width
rings in a uniform magnetic field. As we have shown, the only feature needed for
the discussed phenomena is the degeneracy of the states with the angular momenta
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Fig. 17 Emission spectrum of the quantum ring-microcavity system when the lateral electric field
E = 2.00⇥104V/m is rotated. The angle q is counted between E and the projection of the micro-
cavity mode polarization vector onto the quantum ring plane e. The upper row (brown) corresponds
to the microcavity emission and the lower row (red) correspond to the direct quantum ring emis-
sion. The system is in resonance, D = h̄wMC . The emission frequencies are normalized by the value
of the quantum ring-microcavity coupling constant for q = p/2 (Gp/2) and centred around wMC .
The microcavity pumping rate PMC/Gp/2 = 0.095. (From Ref. [5]).

differing by one at certain magnetic field values, which is known to be present in
quantum rings of finite width [57, 58, 59, 60, 115].

In order to establish an understanding of the potential for observation of the pre-
dicted effects in real systems we provide estimates for experimental conditions es-
sential for measuring these phenomena. While observation of the dipole moment
magneto-oscillations would require a low-temperature laboratory, the oscillations
of selection rules for optical transitions can be potentially observed at room tem-
peratures. Indeed, when the ground and the first excited stated are equally occupied
the dipole moment oscillations are completely suppressed while the intensity of the
optical transitions is only four times lower comparing to the case when the ground
state is fully occupied and the first excited state is empty.

For experimentally attainable quantum rings these transitions occur in the THz
frequency range. It provides an opportunity of utilizing Aharonov-Bohm quantum
rings as THz emitters and detectors. Despite significant progress made towards reli-
able and efficient THz sources, such as THz quantum cascade lasers [150, 151, 152],
free electron THz lasers [153, 154], and recently proposed microcavity-polaritons
THz lasers [130, 132, 122, 123], bridging of the so-called ‘THz gap’ remains a
formidable task. The range of potential application of THz radiation is both vast and
in high demand. The vibrational modes of many molecules, including molecules of
explosive materials, occur at THz frequencies [155, 156], making THz spectroscopy
a powerful and non-invasive tool for molecular identification and characterization.
An airport scanner, which detects molecules found in explosives is only one example
of a highly-useful THz device. Other potential applications of the THz spectroscopy
lie in the area of pharmaceutical research and biomedical diagnostics [157].
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Arguably, the use of Aharonov-Bohm quantum rings for THz radiation and de-
tection has its merits as polarization properties and frequencies of THz transitions
in quantum rings are fully controlled by the applied external fields.

In Section 5 we examined a system of an Aharonov-Bohm quantum ring em-
bedded into a single-mode THz microcavity [5]. It was shown that the discussed
possibility to control optical properties of quantum rings with the external electric
and magnetic fields suggests a new way of regulating the microcavity-emitter cou-
pling strength. Such easy control was never possible with quantum dots embedded
in microcavities where all main optical properties of the system are predefined at the
growth stage. As a result, one can strongly influence emission spectra of the system
by varying external fields.

We calculate the emission spectra of the system under continuous incoherent
pumping when the quantum ring transitions are both in or out of the resonance with
the microcavity mode and for various combinations of the applied electric and mag-
netic fields. We restrict our analysis to linearly polarized microcavity radiation only.
It is shown that when the system is in resonance and the magnetic flux piercing
the quantum ring is equal to a half-integer of the magnetic flux quantum, a precise
control of the satellite peaks in the emission spectra is possible with (i) pumping
intensity and (ii) the direction of the lateral electric field with respect to the micro-
cavity radiation polarization vector. This effect can be used for creating the highly
demanded THz electro-optical modulators. In a quantum ring-microcavity-based
optical modulator, modulation of the intensity, frequencies and polarization of the
THz radiation would be realized by periodic variation of the lateral electric field di-
rection. Potentially, such a device can be indeed created as THz microcavities with
high values of Q-factor based on both Bragg mirrors [158] and photonic crystals
[142] have been already achieved.

The calculated non-resonant emission spectra can be of a great help during the
procedure of modulator adjustment. As we discuss in Section 5, in order to establish
a resonance in the quantum ring-microcavity system one would tune magnitudes of
the applied electric and magnetic fields. Thus, the calculated non-resonant emission
spectra can serve as a reference pattern.

To conclude, we believe Aharonov-Bohm quantum rings to be promising candi-
dates for creating optical devices operating with radiation at THz frequencies and
hope that our work will stimulate further experimental research in this area.

6.2 Outlook

A natural extension of the current work presented in Section 4 is to repeat our cal-
culations using a more realistic (and consequently more complicated) 2D model of
the Aharonov-Bohm quantum ring. We chose the same model as was utilized in
Refs. [57, 58, 59, 60] as it allows an analytical treatment. Preliminary results of our
calculations are shown in Fig. (18). One can see that, as it was stated, the main fea-
ture required for the predicted effects - degeneracy of the energy levels with angular
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momenta differing by unity at certain magnetic field values - is indeed present in
this model.

Fig. 18 A finite-width ring in a magnetic field for different values of in-plane electric field strength.
The ring radius r0 = 100nm and its width is 20nm.

The possible extension of the work presented in Section 5 is to use the quantum
regression theorem [159, 92, 93, 147, 94] (together with the Wiener-Khintchine for-
mula [160, 161, 92, 93, 147, 94]) to calculate the emission spectrum of the quantum
ring-microcavity system. Such an approach can potentially reveal non-Lorentzian
emission lineshapes.

Appendix. Analytical solutions for small matrices.

In the limit of weak electric field, b = eER/(h̄2/MeR2) ⌧ 1, the electron ground,
first and second excited states are well-described by the following three-by-three
system, which is obtained from Eq. (54) for |m| 1

0
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( f +1)2 b 0

b f 2 b
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1
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0
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�1

1

A . (89)

Here f = (F �NF0)/F0 with N integer, so that 0  f  1/2. The eigenvalues ln
of the system (89) are the roots of the cubic equation

l 3
n �l 2

n
�
3 f 2 +2

�
+ln

�
3 f 4 +1�2b 2�� f 6+2 f 4� f 2+2 f 2b 2+2b 2 = 0. (90)
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Solving Eq. (90) we find

l1 =�2/3
p

1+12 f 2 +6b 2 cos(a/3)+ f 2 +2/3, (91)

l2 =�2/3
p

1+12 f 2 +6b 2 cos(a/3�2p/3)+ f 2 +2/3, (92)

l3 =�2/3
p

1+12 f 2 +6b 2 cos(a/3+2p/3)+ f 2 +2/3, (93)

with

cosa =
1�36 f 2 +9b 2

(1+12 f 2 +6b 2)3/2 .

Considering b ⌧ 1 (the limit of weak electric field) we expand Eqs. (91-93) into
Taylor series in f to obtain

l1 = f 2 �2b 2
•
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◆2n
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It can be shown that Eqs. (95,96) coincide with the results of the perturbation theory
in eER for quasi-degenerate states[96] if the coupling to the states with |m| > 1 is
neglected.

The energy spectrum given by Eqs. (91-93) is plotted in Fig. 19. It is nearly
indistinguishable from the energy spectrum, which was obtained by numerical di-
agonalization of the 23⇥ 23 system in Section 4 for the same value of b . A small
discrepancy between the plotted energy spectra is noticeable only for the first and
second excited states. The energy spectrum obtained by numerical diagonalization
of the 23⇥23 system is slightly shifted towards the smaller energies. This shift oc-
curs because the considered 3⇥ 3 matrix does not take into account the coupling
between the m = ±1 and m = ±2 states. For the infinite system and f = 0, pertur-
bation theory up to the second order in b yields

l1 =�2b 2, l2 = 1�b 2/3, l3 = 1+5b 2/3, (97)

whereas from Eqs. (94-96) one gets

l1 =�2b 2, l2 = 1, l3 = 1+2b 2. (98)

The l2 and l3 values in Eq. (97) differ from the values in Eq. (98) by �b 2/3 which
corresponds to the repulsion between the m = ±1 and m = ±2 states calculated
using the second order perturbation theory.
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Fig. 19 The normalized energy spectrum as a function of dimensionless parameter f for b = 0.1.
Dashed line - the result of analytical solution of the 3⇥3 system. Solid line - the result of numerical
diagonalization of the 23⇥23 system. A horizontal line is shown to indicate l = 0 value.

When f = 1/2, and in the absence of a lateral electric field, the m= 0 and m=�1
states are degenerate with energy e1 (0)/4, i.e. l1 = l2 = 1/4, whereas the m =+1
state energy is nine times larger (l3 = 9/4). The contribution from this remote state
can be neglected, and the electron ground and first excited states are well-described
by the following two-by-two system, which contains c�1 and c0 coefficients only,

✓
f 2 b
b ( f �1)2

◆✓
cn

0
cn
�1

◆
= ln

✓
cn

0
cn
�1

◆
. (99)

The eigenvalues ln of the system (99) are the roots of the quadratic equation

l 2
n �ln

�
2 f 2 �2 f +1

�
+ f 4 �2 f 3 + f 2 �b 2 = 0. (100)

Solving Eq. (100) we find

l1,2 = f 2 � f +1/2⌥
q

f 2 � f +b 2 +1/4, (101)

yielding for f = 1/2 the eigenvalue difference l2 �l1 = 2b , corresponding to the
energy splitting of eER as expected from the perturbation theory for degenerate
states. The energy spectrum given by Eq. (101) is plotted in Fig. 20 together with
two lowest eigenvalues of the 23⇥23 system demonstrating a spectacular accuracy
of the approximate solution for b = 0.1.

Let us now return to the three-by-three matrix and examine how its eigenvectors
are modified with changing f . Near the point f = 0 it is convenient to write the
eigenvectors of the system (89) in the following form



54 A.M. Alexeev and M.E. Portnoi

Fig. 20 The normalized energy spectrum as a function of dimensionless parameter f for b = 0.1.
Dashed line - the result of analytical solution of the 2⇥2 system. Solid line - the result of numerical
diagonalization of the 23⇥23 system. A horizontal line is shown to indicate l = 0 value.
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where An denotes the normalization constant corresponding to the eigenvalue ln
and (102) is valid only for b 6= 0. For f = 0 in the limit of weak electric field
(b ⌧ 1) we obtain
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From Eqs. (103-105) one can see that for f = 0 and b ⌧ 1 the electron ground
state is almost a pure m = 0 state, whereas the angular dependencies of the wave-
functions of the first and second excited states are well-described by sinj and cosj
respectively.

The structure of eigenfunctions near f = 1/2 is best understood from Eq. (99),
which yields
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Here A is the normalization constant and b 6= 0. For f = 1/2 we get
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From Eq. (108) one can see that for f = 1/2 the angular dependencies of the ground
and first excited states wavefunctions are described by sin(j/2) and cos(j/2) re-
spectively.

Fig. 21 shows the magnetic flux dependencies of the coefficients |c0|2, |c�1|2, and
|c+1|2 for the electron ground, first and second excited states. From these plots one

Fig. 21 Magnetic flux dependence of the wavefunction coefficients |c0|2 (solid line), |c�1|2 (dotted
line), and |c+1|2 (dashed line): (a) for the ground state; (b) for the first excited state; (c) for the
second excited state.

can see that the electron ground state is almost a pure m = 0 state in a wide region
0  f . 1/4. An admixture of the m =�1 wavefunction increases smoothly as one
approaches the point of degeneracy f = 1/2. Finally, when f = 1/2, the ground state
wavefunction is expressed as a difference of the m =�1 and m = 0 wavefunctions.
The first and the second excited states behave differently. In a small region near
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the point f = 0 the electron first and second excited states wavefunctions consist
of a strong mixture of the m = �1 and m = +1 functions with a tiny admixture
of the m = 0 function. In particular, when f = 0 the first and second excited states
eigenfunctions with good accuracy can be expressed as the difference and the sum
of the m =�1 and m =+1 functions respectively. Optical transitions between these
states and the ground state are only allowed if the polarization of the associated
optical excitations is either perpendicular (for the first excited state) or parallel (for
the second excited state) to the direction of the applied in-plane electric field. Away
from the f = 0 region, only the coefficient c�1 (in the case of the first excited state)
or c+1 (in the case of the second excited state) remains in the Eq. (102), which
now describes almost pure m = +1 and m = �1 states. When f exceeds 1/4 the
first excited state starts to contain a noticeable ad-mixture of m = 0 function, as
discussed above, and for f = 1/2 the first excited state eigenfunction is expressed
as a sum of the m =�1 and m = 0 wavefunctions in equal proportions, whereas the
second excited state remains an almost pure m =+1 state.

The same trend in the evolution of wavefunctions of the three lowest energy states
with changing the flux through the ring can be seen from perturbation theory. For
f = 0, the degeneracy between the first and second excited states is removed in the
second order in eER only. Nevertheless, as a result of the degeneracy, the introduc-
tion of any weak perturbation drastically modifies the wavefunctions corresponding
to these states, turning them from the eigenstates of the angular momentum operator
to the sine and cosine functions. With a slight increase of f , so that f > b 2, the first
and the second excited states, which are not degenerate anymore for f 6= 0, become
governed mainly by the diagonal terms of the Hamiltonian, which do not mix the
m = �1 and m = +1 functions. When f = 1/2, the m = �1 and m = 0 states are
degenerate in the absence of the electric field. This degeneracy is removed in the
first order in eER. The off-diagonal matrix elements connecting m =�1 and m = 0
functions remain of the same order of magnitude as the difference between the diag-
onal terms of the Hamiltonian across a broad range of f values near f = 1/2. This
results in strong mixing of the m =�1 and m = 0 components in the eigenfunctions
of the ground and first excited states for 1/4 . f  1/2.
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A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grand-
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